Pyslet Documentation
Release 0.6.20160201

Steve Lay

February 02, 2016

Contents

1 What’s New? 1
2 Compatibility 7
3 IMS Global Learning Consortium Specifications 13
4 The Open Data Protocol (OData) 101
5 Hypertext Transfer Protocol (RFC2616) 207
6 Other Supporting Standards 247
7 Welcome to Pyslet 357

Python Module Index 359

CHAPTER 1

What’s New?

As part of moving towards PEP-8 compliance a number of name changes are being made to methods and class at-
tributes with each release. There is a module, pyslet.pep8, which contains a compatibility class for remapping missing
class attribute names to their new forms and generating deprecation warnings, run your code with “python -Wd” to
force these warnings to appear. As Pyslet makes the transition to Python 3 some of the old names will go away
completely.

It is still possible that some previously documented names could now fail (module level functions, function arguments,
etc.) but I've tried to include wrappers or aliases so please raise an issue on Github if you discover a bug caused by
the renaming. I’ll restore any missing old-style names to improve backwards compatibility on request.

Finally, in some cases you are encouraged to derive classes from those defined by Pyslet and to override default method
implementations. If you have done this using old-style names you will have to update your method names to prevent
ambiguity. [have added code to automatically detect most problems and force fatal errors at runtime on construction,
the error messages should explain which methods need to be renamed.

1.1 Version Numbering

Pyslet version numbers use the check-in date as their last component so you can always tell if one build is newer than
another. At the moment there is only one actively maintained branch of the code: version ‘0”. Changes are reported
against the versions released to PyPi. ‘XX’ at the end of the version indicates changes that have not yet been released
to PyPi but have been committed to the master branch (with tests passing).

Not sure which version you are using? Try:

from pyslet.info import version
print version

1.2 Version 0.6.20160201

Summary of New Features: LTI module rewritten, now suitable for real applications! WSGI-based web-app frame-
work built using Pyslet’s DAL MySQL Database connector for Pyslet’s DAL SSL, Certificates and HTTP Basic
Authentication HTTP Cookies URNs

#3 PEP-8 driven refactoring (ongoing)

Added new method decorators to make supporting renamed and redirected methods easier. Added checks for ambigu-
ous names in classes likely to have been sub-classed by third-party code.

#8 Support for SSL Certificates in HTTP Clients

https://github.com/swl10/pyslet

Pyslet Documentation, Release 0.6.20160201

Fixed certificate support in OData and Atom clients. See blog post for further information on how to use certificates:
http://sw110.blogspot.co.uk/2014/11/basic-authentication-ssl-and-pyslets.html

#9 HTTP client retry strategy

Improved HTTP retries with simple Fibonacci-based back-off. Also fixed a bug where, if the first request after a server
timed out an idle connection is a POST, the request would fail.

#12 bug when using numeric or named parameters in DB API

The basic bug is fixed and I’ve also added support for paramstyle ‘format’.
#14 content element missing in media-link entries

Fixed. Affected atom xml formatted entities only.

#15 MySQL implementation of Pyslet’s DAL (ongoing)

Changes to the core DAL to deal to better support other DB modules. These included added support for LIMIT
clauses to speed up paged access to large entity sets. Implementation of a retry strategy when database commands
return OperationalError (e.g., MySQL idle timeouts). An updated connection pool manager and an optional pool
cleaner method to clean up idle database connections.

#18 Possible bug in parsing AssociationSet names

Added a compatibility mode to odata2.csdl to enable the metadata model to optionally accept hyphen or dash characters
in simple identifiers using:

import pyslet.odata2.csdl as edm
edm.set_simple_identifier_re (edm.SIMPLE_IDENTIFIER _COMPATIBILITY_RE)

#19 OData Function parameter handling

Enabled function parameter passing in OData service operations. Only primitive types are supported but they are now
parsed correctly from the query string and coerced to the declared parameter type. Bound functions now receive them
as a dictionary of SimpleValue instances.

#20 HTTP Basic Authentication

Fixed an issue with the OData basic authentication support, in some cases the HTTP client was waiting
for a 401 when it could have offered the credentials preemptively. See also the following blog article:
http://swl10.blogspot.co.uk/2014/11/basic-authentication-ssl-and-pyslets.html

#22 Support for navigation properties in OData expressions

Although the code always contained support in general, the mapping to SQL did not previously support the use of
table joins in SQL expressions. This release adds support for joins (but not for nested joins).

#23 A Framework for WSGI-based LTI Applications

Added a new module to make it easier to write WSGI-based applications. Re-factored the existing Basic LTI module
to use the new oauthlib and Pyslet’s own OData-inspired data access layer.

#24 ESA Sentinel mission compatibility

Added the capability to override the metadata used by an OData server to deal with validation issues in some services.
Clients can now also be created from an offline copy of the service root document.

#26 HTTP client eats memory when downloading large unchunked files

Fixed the download buffer which was failing to write out data until an entire chunk (or the entire download) was
complete.

#29 https connections fail on POST after remote server hangup

2 Chapter 1. What’s New?

http://swl10.blogspot.co.uk/2014/11/basic-authentication-ssl-and-pyslets.html
http://swl10.blogspot.co.uk/2014/11/basic-authentication-ssl-and-pyslets.html

Pyslet Documentation, Release 0.6.20160201

Partial mitigation with an agressive 2s window in which to start sending a follow-up request when pipelining through
https. This is a crude solution and the bug remains open for a more robust solution based around use of the Expect
header in HTTP/1.1.

#30 HTTP client cleanup thread

Added an optional parameter to the HTTP client constructor that creates a cleanup thread to close down idle connec-
tions periodically.

#31 Removed reliance on Host header in wsgi app class

There are a number of ways an application can be attacked using a forged Host header, wsgi now ignores the Host
header and uses a new setting for the preferred scheme//host:port.

#32 get_certificate_chain

Implemented a function to create a complete certificate chain. Implemented using pyOpenSSL with a lot of help from
this article

#33 Fixed exception: ‘NoneType’ object has no attribute ‘current_thread’ on exit
Caused by an overly ambitious __del__ method in SQLEntityContainer.

#34 Fixed missing Edm prefix in OData sample code #35 Fixed missing import in 1fc5023 (atom protocol) module
#36 Fixed incorrect error messages in OData $filter queries #37 Extended comparison operators in OData to include
DateTimeOffset values

All thanks to @ianwj5Sint for spotting
#38 Python 3 compatibility work

I have started revising modules to support Python 3. This is not yet production ready but it is a small impact on existing
modules. I have done my best to maintain compatibility, in practice code should continue to work with no changes
required.

The most likely failure mode is that you may find a unicode string in Python 2 where you expected a plain str. This
can have a knock-on effect of promoting data to unicode, e.g., through formatting operations. In general the returned
types of methods are just being clarified and unicode values are returned only where they may have been returned
previously anyway. However, in the case of the URI attributes in the rfc2396 module the types have changed from str
to unicode in this release.

This is work in progress but the impact is likely to be minimal at this stage.
#40 & #41 Composite keys and Slug headers

Key hints were not working properly between the OData client and server implementations, and were not working at
all when the key was composite. It is now possible to pass the formatted entity key predicate (including the brackets)
as a Slug to the OData server and it will attempt to parse it and use that key where allowed by the underlying data
layer.

#43 Fixes for Python running on Windows

The only substantive changes required were to the way we check for io failures when IOError is raised and the way
we handle URI containing non-ASCII characters. Some of the unit tests were also affected due to issues with timing,
including the reduced precision of time.time() on Windows-based systems.

Untracked enhancements:

Added a new module to support HTTP cookies. The HTTP/OData client can now be configured to accept cookies.
The default behaviour is to ignore them so this won’t affect existing applications.

Added a new module to support URN syntax to provide a better implementation of the IMS LTI vocabularies.

Added an optional params dictionary to the OData expression parser to make it much easier to parse parameterized
OData queries.

1.2. Version 0.6.20160201 3

http://blog.san-ss.com.ar/2012/05/validating-ssl-certificate-in-python.html

Pyslet Documentation, Release 0.6.20160201

Added new methods for creating and executing drop table statements in the DAL.
Reworked sample code for the weather data server, included example driver files for mod_wsgi
Other fixes:

Fixed an issue in the OData client that caused basic key lookup in filtered entity collections to use both a key predicate
and a $filter query option. This was causing the filter to be ignored, now the key predicate will be added to the filter
rather than the path segment.

Fixed the OData DateTime parser to accept (and discard) any time zone specifier given in the literal form as it is now
allowed in the ABNF and may therefore be generated by OData servers.

Fixed a bug in the OData server which meant that requests for JSON format responses were not being limited by the
builtin topmax and would therefore attempt to return all matching entities in a single response.

Fixed a bug in the OData server which meant that use of $count was causing the $filter to be ignored!

Fixed a bug in the OData URI parser that prevent compound keys from working properly when zealous escaping was
used.

Fixed a bug in the OData server which meant that error messages that contained non-ASCII characters were causing a
500 error due to character encoding issues when outputting the expected OData error format.

Fixed a bug in the OData expression evaluator when evaluating expressions that traversed navigation properties over
optional relations. If there was no associated entity an error was being raised.

Fixed a bug in the SQL DAL implementation which means that navigation properties that require joining across a

w__,

composite key were generating syntax errors, e.g., in SQLite the message ‘near “="": syntax error’ would be seen.

Fixed a bug in the SQLite DAL implementation which means that in-memory databases were not working correctly in
multi-threaded environments.

Fixed XML parser bug, ID elements in namespaced documents were not being handled properly.
Fixed bug in the OData server when handling non-URI characters in entity keys

Fixed a bug with composite key handling in media streams when using the SQL layer

1.3 Version 0.5.20140801

Summary of New Features:
* OData Media Resources
* HTTP Package refactoring and retry handling
* Python 2.6 Support
Tracked issues addressed in this release:
#1 added a Makefile to make it easier for others to build and develop the code
Added a tox.ini file to enable support for tox (a tool for running the unittests in multiple Python environments).
#3 PEP-8 driven refactoring (ongoing)
#2 Migrated the code from SVN to git: https://github.com/swl10/pyslet
#4 Added support for read-only properties and tests for auto generated primary and foreign key values
#6 added integration between git and travis ci (thanks @sassman for your help with this)

#10 restored support for Python 2.6

4 Chapter 1. What’s New?

https://github.com/swl10/pyslet

Pyslet Documentation, Release 0.6.20160201

1.3.1 Other Fixes

OData URLSs with reserved values in their keys were failing. For example Entity(‘why%3F’) was not being correctly
percent-decoded by the URI parsing class ODataURI. Furthermore, the server implementation was fixed to deal with
the fact that PATH_INFO in the WSGI environ dictionary follows the CGI convention of being URL-decoded.

1.4 Version 0.4 and earlier

These are obsolete, version 0.4 was developed on Google Code as an integral part of the QTI Migration tool.

1.5 PyAssess

A precursor to Pyslet. For more information see: https://code.google.com/p/qtimigration/wiki/PyAssess

1.4. Version 0.4 and earlier 5

https://code.google.com/p/qtimigration/wiki/PyAssess

Pyslet Documentation, Release 0.6.20160201

6 Chapter 1. What’s New?

CHAPTER 2

Compatibility

2.1 Python 2.6 Compatibility

When imported, this module modifies a number of standard modules. This patching is done at run time by the
pyslet.py26 module and will affect any script that uses Pyslet. It does not modify your Python installation!

io Benign addition of the SEEK_* constants as defined in Python 2.7.

wsgiref.simple_server Modifies the behaviour of the WSGI server when procssing HEAD requests so that Content-
Length headers are not stripped. There is an issue in Python 2.6 that causes HEAD requests to return a Content-
Length of 0 if the WSGI application does not return any data. The behaviour changed in Python 2.7 to be more
as expected.

zipfile Patches is_zipfile to add support for passing open files which is allowed under Python 2.7 but not under 2.6.

2.1.1 Module Reference

pyslet.py26.py26 = False
If you must know whether or not you are running under Python 2.6 then you can check using this flag,which is
True in that case.

2.2 Python 2 Compatibility

The goal of Pyslet is to work using the same code in both Python 3 and Python 2. Pyslet was originally developed in
very early versions of Python 2, it then became briefly dependent on Python 2.7 before settling down to target Python
2.6 and Python 2.7.

One approach to getting the code working with Python 3 would be to implement a compatibility module like six which
helps code targeted at Python 2 to run more easily in Python 3. Unfortunately, the changes required are still extensive
and so more significant transformation is required.

The purpose of this module is to group together the compatibility issues that specifically affect Pyslet. It provides
definitions that make the intent of the Pyslet code clearer.

pyslet.py2.py2 = True
Unfortunately, sometimes you just need to know if you are running under Python 2, this flag provides a common
way for version specific code to check. (There are multiple ways of checking, this flag just makes it easier to
find places in Pyslet where we care.)

Pyslet Documentation, Release 0.6.20160201

pyslet.py2.suffix
In some cases you may want to use a suffix to differentiate something that relates specifically to Python 3 versus
Python 2. This string takes the value ‘3’ when Python 3 is in use and is an empty string otherwise.

One example where Pyslet uses this is in the stem of a pickled file name as such objects tend to be version
specific.

2.2.1 Text, Characters, Strings and Bytes

This is the main area where Pyslet has had to change. In most cases, Pyslet explicitly wants either Text or Binary data
so the Python 3 handling of these concepts makes a lot of sense.

pyslet.py2.u8 (arg)
A wrapper for string literals, obviating the need to use the ‘u’ character that is not allowed in Python 3 prior to
3.3. The return result is a unicode string in Python 2 and a str object in Python 3. The argument should be a
binary string in UTF-8 format, it is not a simple replacement for ‘u’. There are other approaches to this problem
such as the u function defined by compatibility libraries such as six. Use whichever strategy best suits your
application.

u8 is forgiving if you accidentally pass a unicode string provided that string contains only ASCII characters.
Recommended usage:

my_string = u8(b'hello")
my_string = u8('hello'") # works for ASCII text
my_string = u8(u'hello') # wrong, but will work for ASCII text
my_string = u8 (b'\xe8\x8b\xbl\xe5\x9b\xbd")
my_string = u8('\xe8\x8b\xbl\xe5\x9%\xbd') # raises ValueError
u8 (u'\u82£f1\u56£d') # raises ValueError
us8 ('

\u82f1\ub56fd') # raises ValueError in Python 3 only

my_string =
my_string =

73

The latter examples above resolve to the following two characters: “”.

In cases where you only want to encode characters from the ISO-8859-1 aka Latin-1 character set you may
prefer to use the ul function instead.

pyslet.py2.ul (arg)
An alternative wrapper for string literals, similar to u8 () but using the latin-1 codec. ul is a little more forgiving
than u8:

my_string = ul (b'Caf\xe9")
my_string ul ('Caf\xe9') # works for Latin text
my_string = ul(u'Caf\xe9') # wrong, but will work for Latin text

Notice that unicode escapes for characters outside the first 256 are not allowed in either wrapper. If you want to use
a wrapper that interprets strings like “\u82f1\u56fd’ in both major Python versions you should use a module like six
which will pass strings to the unicode_literal codec. The approach taken by Pyslet is deliberately different, but has the
advantage of dealing with some awkward cases:

ul (b'\\user')

The u wrapper in six will throw an error for strings like this:

six.u('\\user"')
Traceback (most recent call last):

UnicodeDecodeError: 'unicodeescape' codec can't decode bytes in
position 0-4: end of string in escape sequence

8 Chapter 2. Compatibility

Pyslet Documentation, Release 0.6.20160201

Finally, given the increased overhead in calling a function when interpreting literals consider moving literal definitions
to module level where they appear in performance critical functions:

CAFE = ul (b"Caf\xe9")

def at_cafe_1(location):
return location == u"Caf\xe9"

def at_cafe_2 (location):
return location == CAFE

def at_cafe_3(location):
return location == ul (b"Caf\xe9")

In a quick test with Python 2, using the execution time of version 1 as a bench mark version 2 was approximately 1.1
times slower but version 3 was 19 times slower (the results from six.u are about 16 times slower). The same tests with
Python 3 yield about 9 and 3 times slower for ul and six.u respectvely.

Compatibility comes with a cost, if you only need to support Python 3.3 and higher (while retaining compatibility
with Python 2) then you should use the first form and ignore these literal functions in performance critical code. If
you want more compatibility then define all string literals ahead of time, e.g., at module level. One common case is
provided for with the following constant:

data:: empty_text

An empty character string. Frequently used as an object to join character strings:

py2.empty_text.join (my_strings)

pyslet.py2.is_text (arg)
Returns True if arg is text and False otherwise. In Python 3 this is simply a test of whether arg is of type str
but in Python 2 both str and unicode types return True. An example usage of this function is when checking
arguments that may be either text or some other type of object.

pyslet.py2.force_text (arg)
Returns arg as text or raises TypeError. In Python 3 this simply checks that arg is of type str, in Python 2 this
allows either string type but always returns a unicode string. No codec is used so this has the side effect of
ensuring that only ASCII compatible str instances will be acceptable in Python 2.

pyslet.py2.to_text (arg)
Returns arg as text, converting it if necessary. In Python 2 this always returns a unicode string. In Python 3, this
function is almost identical to the built-in s¢r except that it takes binary data that can be interpreted as ascii and
converts it to text. In other words:

to_text (b"hello") == "hello"

In both Python 2 and Python 3. Whereas the following is only true in Python 2:

str(b"hello") == "hello"

arg need not be a string, this function will cause an arbitrary object’s __str__ (or __unicode__ in Python 2)
method to be evaluated.

pyslet.py2.is_unicode (arg)
Returns True if arg is unicode text and False otherwise. In Python 3 this is simply a test of whether arg is of
type str but in Python 2 arg must be a unicode string. This is used in contexts where we want to discriminate
between bytes and text in all Python versions.

pyslet.py2.character (codepoint)
Given an integer codepoint returns a single unicode character. You can also pass a single byte value (defined as

2.2. Python 2 Compatibility 9

Pyslet Documentation, Release 0.6.20160201

the type returned by indexing a binary string). Bear in mind that in Python 2 this is a single-character string, not
an integer. See byte () for how to create byte values dynamically.

pyslet.py2.force_bytes (arg)
Given either a binary string or a character string, returns a binary string of bytes. If arg is a character string then
it is encoded with the ‘ascii’ codec.

pyslet.py2.byte (value)
Given either an integer value in the range 0..255, a single-character binary string or a single-character with
Unicode codepoint in the range 0..255: returns a single byte representing that value. This is one of the main
differences between Python 2 and 3. In Python 2 bytes are characters and in Python 3 they’re integers.

pyslet.py2.byte_value (b)
Given a value such as would be returned by byte () or by indexing a binary string, returns the corresponding
integer value. In Python 3 this a no-op but in Python 2 it maps to the builtin function ord.

pyslet.py2.join_bytes (arg)
Given an arg that iterates to yield bytes, returns a bytes object containing those bytes.

class pyslet.py2.UnicodeMixin
Bases: object

Micxin class to handle string formatting

For classes that need to define a __unicode__ method of their own this class is used to ensure that the correct
behaviour exists in Python versions 2 and 3.

The mixin class implements __str__ based on your existing __unicode__ implementation. In python 2, the out-
put is encoded using the default system encoding. This may well generate errors but that seems more appropriate
as it will catch cases where the str function has been used instead of to_text ().

2.2.2 lterable Fixes

Python 3 made a number of changes to the way objects are iterated.

pyslet.py2.range3 (*args)
Uses Python 3 range semantics, maps to xrange in Python 2.

pyslet.py2.dict_keys (d)
Returns an iterable object representing the keys in the dictionary d.

pyslet.py2.dict_values (d)
Returns an iterable object representing the values in the dictionary d.

2.2.3 Comparisons
class pyslet.py2.CmpMixin
Bases: object
Micxin class for handling comparisons

For compatibility with Python 2’s __cmp__ method this class defines an implementation of __eq__, __1t__and
__le__thatare redirected to __cmp__. These are the minimum methods required for Python’s rich comparisons.

In Python 2 it also provides an implementation of __ne__ that simply inverts the result of __eq__. (This is not
required in Python 3.)

10 Chapter 2. Compatibility

Pyslet Documentation, Release 0.6.20160201

2.2.4 Misc Fixes

Imports the builtins module enabling you to import it from py?2 instead of having to guess between __builtin__ (Python
2) and builtins (Python 3).

pyslet.py2.urlopen (*args, **kwargs)
Imported from urllib.request in Python 3, from urlib in Python 2.

2.3 PEP-8 Compatibility

Pyslet requires Python 2.6 or Python 2.7, with Python 2.7 being preferred.

2.4 Python 2.6

When run under Python 2.6 Pyslet will patch some modules to make them more compatible with Python 2.7 code. For
details see:

Python 2.6 Compatibility

Earlier versions of Python 2.6 have typically been built with a version of sqlite3 that does not support validation of
foreign key constraints, the unittests have been designed to skip these tests when such a version is encountered.

Note: When run under Python 2.6, Pyslet may not support certificate validation of HTTP connections
properly, this seems to depend on the version of OpenSSL that Python is linked to. If you have successfully
used pip to install Pyslet then your Python is probably unaffected though.

Please be aware of the following bug in Python 2.6: http://bugs.python.org/issue2531 this problem caused a number
of Pyslet’s tests to fail initially and remains a potential source of problems if you are using Decimal types in OData
models.

2.5 Python 3

Pyslet is not currently compatible with Python 3, though some work has been done towards a Python 3 version and the
unittests are regularly run with the -3 flag to check for issues. Try running your own code that uses Pyslet with python
options -3Wd to expose any issues that you are likely to need to fix on any future transition.

Work has now started on porting the core modules to be compatible with Python 3.3 (Pyslet may require use of the
‘u’ on unicode strings for some time so compatibility with Python 3 versions earlier than 3.3 is unlikely). Rather than
just fix up the existing code using a module like six Pyslet now includes it’s own module containing compatibility
definitions that target the particular idioms I've used in the package.

Python 2 Compatibility

Although the package can’t be built for distribution or installed using setup.py, if you include the source locally you
can successfully import the following modules in Python 3 (in addition to compatibility modules described elsewhere
on this page):

pyslet.info
pyslet.iso8601
pyslet.rfc2396
pyslet.unicodeb
pyslet.vfs

2.3. PEP-8 Compatibility 11

http://bugs.python.org/issue2531

Pyslet Documentation, Release 0.6.20160201

2.6 PEP-8

The code is not currently PEP-8 compliant but it is slowly being refactored for compliance as modules are touched
during development. Where critical, methods are renamed from CamelCase to PEP-8 compliant lower_case_form
then the old names are defined as wrappers which raise deprecation warnings.

For more information see:

PEP-8 Compatibility

12 Chapter 2. Compatibility

CHAPTER 3

IMS Global Learning Consortium Specifications

The section contains modules that implement specifications published by the IMS Global Learning Consortium. For
more information see http://www.imsglobal.org/

Contents:

3.1 IMS Content Packaging (version 1.2)

The IMS Content Packaging specification defines methods for packaging and organizing resources and their associated
metadata for transmission between systems. There is a small amount of information on Wikipedia about content
packaging in general, see http://en.wikipedia.org/wiki/Content_package. The main use of IMS Content Packaging
in the market place is through the SCORM profile. Content Packaging is also used as the basis for the new IMS
Common Cartridge, and a method of packaging assessment materials using the speicifcation is also described by IMS
QTI version 2.1.

Official information about the specification is available from the IMS GLC:
http://www.imsglobal.org/content/packaging/index.html

3.1.1 Example

The following example script illustrates the use of this module. The script takes two arguments, a resource file to be
packaged (such as an index.html file) and the path to save the zipped package to. The script creates a new package
containing a single resource with the entry point set to point to the resource file. It also adds any other files in the
same directory as the resource file, using the python os.walk function to include files in sub-directories too. The
ContentPackage. IgnoreFilePath () method is used to ensure that hidden files are not added:

#! /usr/bin/env python

import sys, os, os.path, shutil
from pyslet.imscpvlp2 import ContentPackage, PathInPath
from pyslet.rfc2396 import URIFactory

def main () :
if len(sys.argv) !=3:
print "Usage: makecp <resource file> <package file>"
return

resFile=sys.argv[l]
pkgFile=sys.argv[2]
pkg=ContentPackage ()
try:

13

http://www.imsglobal.org/
http://en.wikipedia.org/wiki/Content_package
http://www.imsglobal.org/content/packaging/index.html

Pyslet Documentation, Release 0.6.20160201

finally:

if name == "

main ()

if os.path.isdir(resFile):
print "Resource entry point must be a file, not a directory."
return
resHREF=URI. from_path (resFile)
srcDir, srcFile=os.path.split (resFile)
r=pkg.manifest.root.Resources.ChildElement (pkg.manifest.root.Resources.}
r.href=str (resHREF.relative (URI.from_path (os.path.join(srcDir, 'imsmanifq
r.type=="'webcontent'
for dirpath,dirnames, filenames in os.walk (srcDir) :
for f in filenames:
srcPath=os.path. join (dirpath, f)
if pkg.IgnoreFilePath(srcPath):
print "Skipping: "$srcPath
continue

dstPath=os.path. join (pkg.dPath,PathInPath (srcPath, srcDix

copy the file
dName, fName=os.path.split (dstPath)
if not os.path.isdir (dName) :
os.makedirs (dName)
print "Copying: "$srcPath
shutil.copy (srcPath,dstPath)
pkg.File(r,URI.from_path (dstPath))
if os.path.exists (pkgFile):
if raw_input ("Are you sure you want to overwrite ? (y/n) "%pkd
return
pkg.manifest.Update ()
pkg.ExportToPIF (pkgFile)

pkg.Close ()

main__ ":

Note the use of the try:... finally: construct to ensure that the ContentPackage object is properly closed when it
is finished with. Note also the correct way to create elements within the manifest, using the dependency safe *Class

attributes:

r=pkg.manifest.root.Resources.ChildElement (pkg.manifest.root.Resources.ResourceClass)

This line creates a new resource element as a child of the (required) Resources element.

At the end of the script the ManifestDocument is updated on the disk using the inherited Update () method.
The package can then be exported to the zip file format.

3.1.2 Reference

class pyslet.imscpvlp2.ContentPackage (dPath=None)
Represents a content package.

When constructed with no arguments a new package is created. A temporary folder to hold the contents of the
package is created and will not be cleaned up until the C1ose () method is called.

Alternatively, you can pass an operating system or virtual file path to a content package directory, to an ims-
manifest.xml file or to a Package Interchange Format file. In the latter case, the file is unzipped into a temporary
folder to facilitate manipulation of the package contents.

A new manifest file is created and written to the file system when creating a new package, or if it is missing
from an existing package or directory.

14

Chapter 3. IMS Global Learning Consortium Specifications

esourceClass
st.xml"))))

File) .lower (.

Pyslet Documentation, Release 0.6.20160201

ManifestDocumentClass
the default class for representing the Manifest file

alias of ManifestDocument

dPath = None
the VirtualFilePath to the package’s directory

manifest = None
The ManifestDocument object representing the imsmanifest.xml file.

The file is read (or created) on construction.

fileTable = None
The fileTable is a dictionary that maps package relative file paths to the Fi I e objects that represent them
in the manifest.

It is possible for a file to be referenced multiple times (although dependencies were designed to take care
of most cases it is still possible for two resources to share a physical file, or even for a resource to contain
multiple references to the same file.) Therefore, the dictionary values are lists of 71 I e objects.

If a file path maps to an empty list then a file exists in the package which is not referenced by any resource.
In some packages it is commone for auxiliary files such as supporting schemas to be included in packages
without a corresponding F'i 1 e object so an empty list does not indicate that the file can be removed safely.
These files are still included when packaging the content package for interchange.

Finally, if a file referred to by a F'i 1e object in the manifest is missing an entry is still created in the
fileTable. You can walk the keys of the fileTable testing if each file exists to determine if some expected
files are missing from the package.

The keys in fileTable are VirtualFilePath instances. To convert a string to an appropriate instance use the
FilePath () method.

FilePath (*path)
Converts a string into a pyslet.vfs.VirtualFilePath instance suitable for using as a key into the
fileTable. The conversion is done using the file system of the content package’s directory, dPat h.

SetIgnoreFiles (ignoreFiles)
Sets the regular expression used to determine if a file should be ignored.

Some operating systems and utilities create hidden files or other spurious data inside the content package
directory. For example, Apple’s OS X creates .DS_Store files and the svn source control utility creates
.svn directories. The files shouldn’t generally be included in exported packages as they may confuse the
recipient (who may be using a system on which these files and directories are not hidden) and be deemed
to violate the specification, not to mention adding unnecessarily to the size of the package and perhaps
even leaking information unintentionally.

To help avoid this type of problem the class uses a regular expression to determine if a file should be
considered part of the package. When listing directories, the names of the files found are compared against
this regular expression and are ignored if they match.

b}

By default, the pattern is set to match all directories and files with names beginning °.
normally need to call this method.

so you will not

IgnoreFile (f)
Compares a file or directory name against the pattern set by Set TgnoreFiles ().

f is a unicode string.

IgnoreFilePath (fPath)
Compares a file path against the pattern set by Set IgnoreFiles ()

3.1. IMS Content Packaging (version 1.2) 15

Pyslet Documentation, Release 0.6.20160201

s

The path is normalised before comparison and any segments consisting of the string ‘.. are skipped. The
method returns True if any of the remaining path components matches the ignore pattern. In other words,
if the path describes a file that is is in a directory that should be ignored it will also be ignored.

The path can be relative or absolute. Relative paths are nor made absolute prior to comparison so this
method is not affected by the current directory, even if the current diretory would itself be ignored.

RebuildFileTable ()

Rescans the file system and manifest and rebuilds the fileTable.

PackagePath (fPath)

Converts an absolute file path into a canonical package-relative path

Returns None if fPath is not inside the package.

ExportToPIF (zPath)

Exports the content package, saving the zipped package in zPath
zPath is overwritten by this operation.

In order to make content packages more interoperable this method goes beyond the basic zip specifica-
tion and ensures that pathnames are always UTF-8 encoded when added to the archive. When creating
instances of ContentPackage from an existing archive the reverse transformation is performed. When
exchanging PIF files between systems with different native file path encodings, encoding erros may occurr.

GetUniqueFile (suggestedPath)

Returns a unique file path suitable for creating a new file in the package.

suggestedPath is used to provide a suggested path for the file. This may be relative (to the root and
manifest) or absolute but it must resolve to a file (potentially) in the package. The suggestedPath should
either be a VirtualFilePath (of the same type as the content package’s dPath) or a string suitable for
conversion to a VirtualFilePath.

When suggestedPath is relative, it is forced to lower-case. This is consistent with the behaviour of norm-
case on systems that are case insensitive. The trouble with case insensitive file systems is that it may be
impossible to unpack a content package created on a case sensitive system and store it on a case insenstive
one. By channelling all file storage through this method (and constructing any URIs after the file has been
stored) the resulting packages will be more portable.

If suggestedPath already corresponds to a file already in the package, or to a file already referred to in the
manifest, then a random string is added to it while preserving the suggested extension in order to make it
unique.

The return result is always normalized and returned relative to the package root.

File (resource, href’)

Returns a new F'i 1e object attached to resource

href is the URI of the file expressed relative to the resource element in the manifest. Although this is
normally the same as the URI expressed relative to the package, a resource may have an xml:base attribute
that alters the base for resolving relative URIs.

href may of course be an absolute URI to an external resource. If an absolute URI is given to a local file it
must be located inside the package.

Attempting to add a F'i 1e object representing the manifest file iteself will raise CPFilePathError.

The fileTable is updated automatically by this method.

FileCopy (resource, srcURL)

Returns a new F'1 1e object copied into the package from srcURL, attached to resource.

16

Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

The file is copied to the same directory as the resource’s entry point or to the main package directory if the
resource has no entry point.

The F'i1e object is actually created with the 77 e () method.

Note that if srcURL points to a missing file then no file is copied to the package but the associated F'i e
is still created. It will point to a missing file.

DeleteFile (href)
Removes the file at href from the file system

This method also removes any file references to it from resources in the manifest. href may be given
relative to the package root directory. The entry in fileTable is also removed.

CPFileTypeError is raised if the file is not a regular file

CPFilePathError is raised if the file is an TgnoreFile (), the manifest itself or outside of the
content package.

CPProtocolError is raised if the indicated file is not in the local file system.

GetPackageName ()
Returns a human readable name for the package

The name is determined by the method used to create the object. The purpose is to return a name that
would be intuitive to the user if it were to be used as the name of the package directory or the stem of a file
name when exporting to a PIF file.

Note that the name is returned as a unicode string suitable for showing to the user and may need to be
encoded before being used in file path operations.

Close ()
Closes the content package, removing any temporary files.

This method must be called to clean up any temporary files created when processing the content pack-
age. Temporary files are created inside a special temporary directory created using the builtin python
tempdir.mkdtemp function. They are not automatically cleaned up when the process exits or when the
garbage collector disposes of the object. Use of try:... finally: to clean up the package is recommended.
For example:

pkg=ContentPackage ("MyPackage.zip")
try:

do stuff with the content package here
finally:

pkg.Close ()

class pyslet.imscpvlp2.ManifestDocument (**args)

Bases: pyslet.xmlnames20091208.XMLNSDocument
Represents the imsmanifest.xml file itself.

Buildong on pyslet.xmlnames20091208.XMLNSDocument this class is used for parsing and writing
manifest files.

The constructor defines three additional prefixes using MakePrefix (), mapping xsi onto XML schema,
imsmd onto the IMS LRM namespace and imsqti onto the IMS QTI 2.1 namespace. It also adds a schemalo-
cation attribute. The elements defined by the pyslet.imsmdvlp2pl and pyslet. imsqgtiv2pl modules
are added to the c1lassMap to ensure that metadata from those schemas are bound to the special classes defined
there.

defaultNS = None
the default namespace is set to TMSCP_NAMESPACE

3.1.

IMS Content Packaging (version 1.2) 17

Pyslet Documentation, Release 0.6.20160201

get_element_class (name)
Overrides pyslet.xmlnames20091208.XMLNSDocument .get_element_class () to look
up name.

The class contains a mapping from (namespace,element name) pairs to class objects representing the ele-
ments. Any element not in the class map returns XMLNSElement () instead.

Constants
The following constants are used for setting and interpreting XML documents that conform to the Content Packaging
specification

pyslet.imscpvlp2.IMSCP_NAMESPACE = ‘http://www.imsglobal.org/xsd/imscp_v1p1’
str(object="") -> string

Return a nice string representation of the object. If the argument is a string, the return value is the same object.

pyslet.imscpvlp2.IMSCP_SCHEMALOCATION = ‘http://www.imsglobal.org/xsd/imscp_v1pl.xsd’
str(object="") -> string

Return a nice string representation of the object. If the argument is a string, the return value is the same object.

pyslet.imscpvlp2.IMSCPX_NAMESPACE = ‘http://www.imsglobal.org/xsd/imscp_extensionv1lp2’
str(object="") -> string

Return a nice string representation of the object. If the argument is a string, the return value is the same object.

Elements
class pyslet.imscpvlp2.CPElement (parent, name=None)
Bases: pyslet.xmlnames20091208.XMLNSElement
Base class for all elements defined by the Content Packaging specification.

class pyslet.imscpvlp2.Manifest (parent)
Bases: pyslet.imscpvlip2.CPElement

Represents the manifest element, the root element of the imsmanifest file.

MetadataClass
the default class to represent the metadata element

alias of Metadata

OrganizationsClass
the default class to represent the organizations element

alias of Organizations

ResourcesClass
the default class to represent the resources element

alias of Resources

ManifestClass
the default class to represent child manifest elements

alias of Manifest

Metadata = None
the manifest’s metadata element

18 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

Organizations = None
the organizations element

Resources = None
the resources element

Manifest = None
a list of child manifest elements

class pyslet.imscpvlp2.Metadata (parent)
Bases: pyslet.imscpvip2.CPElement

Represents the Metadata element.

SchemaClass
the default class to represent the schema element

alias of Schema

SchemaVersionClass
alias of SchemaVersion

Schema = None
the optional schema element

SchemaVersion = None
the optional schemaversion element

class pyslet.imscpvlp2.Schema (parent, name=None)
Bases: pyslet.imscpvlp2.CPElement

Represents the schema element.

class pyslet.imscpvlp2.SchemaVersion (parent, name=None)
Bases: pyslet.imscpvlip2.CPElement

Represents the schemaversion element.

class pyslet.imscpvlp2.0rganizations (parent)
Bases: pyslet.imscpvlp2.CPElement

Represents the organizations element.

OrganizationClass
the default class to represent the organization element

alias of Organization

Organization = None
a list of organization elements

class pyslet.imscpvlp2.0rganization (parent, name=None)
Bases: pyslet.imscpvip2.CPElement

Represents the organization element.

class pyslet.imscpvlp2.Resources (parent)
Bases: pyslet.imscpvlip2.CPElement

Represents the resources element.

ResourceClass
the default class to represent the resource element

alias of Resource

3.1. IMS Content Packaging (version 1.2) 19

Pyslet Documentation, Release 0.6.20160201

Resource = None
the list of resources in the manifest

class pyslet.imscpvlp2.Resource (parent)
Bases: pyslet.imscpvip2.CPElement

Represents the resource element.

MetadataClass
the default class to represent the metadata element

alias of Metadata

FileClass
the default class to represent the file element

aliasof File

DependencyClass
the default class to represent the dependency element

alias of Dependency

type = None
the type of the resource

href = None
the href pointing at the resource’s entry point

Metadata = None
the resource’s optional metadata element

File = None
a list of file elements associated with the resource

Dependency = None
a list of dependencies of this resource

GetEntryPoint ()
Returns the 71 1 e object that is identified as the entry point.

If there is no entry point, or no 71 1 e object with a matching href, then None is returned.

SetEntryPoint (f)
Set’s the i 1 e object that is identified as the resource’s entry point.

The File must already exist and be associated with the resource.

class pyslet.imscpvlp2.File (parent)
Bases: pyslet.imscpvlp2.CPElement

Represents the file element.

href = None
the href used to locate the file object

PackagePath (¢p)
Returns the normalized file path relative to the root of the content package, cp.

If the href does not point to a local file then None is returned. Otherwise, this function calculates an
absolute path to the file and then calls the content package’s ContentPackage.PackagePath ()
method.

class pyslet.imscpvlp2.Dependency (parent)
Bases: pyslet.imscpvip2.CPElement

20 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

Represents the dependency element.

identifierref = None
the identifier of the resource in this dependency

Utilities

pyslet.imscpvlp?2.PathInPath (childPath, parentPath)
Utility function that returns childPath expressed relative to parentPath
This function processes file system paths, not the path components of URI.

Both paths are normalized to remove any redundant navigational segments before any processing, the resulting
path will not contain these either.

If childPath is not contained in parentPath then None is returned.

If childPath and parentPath are equal an empty string is returned.

3.2 IMS Question and Test Interoperability (version 1.2)

The IMS Question and Test Interoperability (QTI) specification version 1.2 was finalized in 2002. After a gap of
1-2 years work started on a major revision, culminating in version 2 of the specification, published first in 2005. For
information about the history of the specification see http://en.wikipedia.org/wiki/QTT - official information about the
specification is available from the IMS GLC: http://www.imsglobal.org/question/index.html

The purpose of this module is to allow documents in QTI v1 format to be parsed and then transformed into objects
representing the QTI v2 data model where more sophisticated processing can be performed. Effectively, the native
model of assessment items in Pyslet (and in the PyAssess package it supersedes) is QTI v2 and this module simply
provides an import capability for legacy data marked up as QTI v1 items.

Class methods or functions with names beginning MigrateV2 use a common pattern for performing the conversion.
Errors and warnings are logged during conversion to a list passed in as the log parameter.

3.2.1 Core Types and Utilities

This module contains a number core classes used to support the standard.

Enumerations

Where the DTD defines enumerated attribute values we define special enumeration classes. These follow a common
pattern in which the values are represented by constant members of the class. The classes are not designed to be
instantiated but they do define class methods for decoding and encoding from and to text strings.

class pyslet.qtivl.core.Action
Bases: pyslet.xsdatatypes20041028.Enumeration

Action enumeration (for pyslet.qgtivl.common.SetVar:

(Set | Add | Subtract | Multiply | Divide) 'Set'

Defines constants for the above action types. Usage example:

Action.Add

3.2. IMS Question and Test Interoperability (version 1.2) 21

http://en.wikipedia.org/wiki/QTI
http://www.imsglobal.org/question/index.html

Pyslet Documentation, Release 0.6.20160201

Note that:

Action.DEFAULT == Action.Set

For more methods see Enumeration

class pyslet.qtivl.core.Area
Bases: pyslet.xsdatatypes20041028.Enumeration

Area enumeration:

(Ellipse | Rectangle | Bounded) 'Ellipse’

Defines constants for the above area types. Usage example:

Area.Rectangle

Note that:

Area .DEFAULT == Area.Ellipse

For more methods see Enumeration

pyslet.gtivl.core.MigrateV2AreaCoords (area, value, log)
Returns a tuple of (shape,coords object) representing the area.

earea is one of the Area constants.
*value is the string containing the content of the element to which the area applies.

This conversion is generous because the separators have never been well defined and in some cases content uses
a mixture of space and °,’.

Note also that the definition of rarea was updated in the 1.2.1 errata and that affects this algorithm. The clarifi-
cation on the definition of ellipse from radii to diameters might mean that some content ends up with hotspots
that are too small but this is safer than hotspots that are too large.

Example:

import pyslet.gtivl.core as gticorel

import pyslet.qtiv2.core as gticore2

import pyslet.html40_1991224 as html

log=1]

shape, coords=gticorel.MigrateV2AreaCoords (qticorel.Area.Ellipse,"10,10,2,2",1l0oQg)
returns (qticoreZ2.Shape.circle, html.Coords([10, 10, 1]))

Note that Ellipse was deprecated in QTI version 2:

import pyslet.qgtivl.core as gticorel

import pyslet.html40_1991224 as html

log=[]

shape, coords=gticorel.MigrateV2AreaCoords (gqticorel.Area.Ellipse,"10,10,2,4",1l0Q9)
print log

outputs the following...

['Warning: ellipse shape is deprecated in version 2']

class pyslet.qtivl.core.FeedbackStyle
Bases: pyslet.xsdatatypes20041028.Enumeration

feedbackstyle enumeration:

22 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

(Complete | Incremental | Multilevel | Proprietary) 'Complete’

Defines constants for the above feedback style. Usage example:

FeedbackStyle.Decimal

Note that:

FeedbackStyle.DEFAULT == FeedbackStyle.Complete

For more methods see Enumeration

class pyslet.qtivl.core.FeedbackType
Bases: pyslet.xsdatatypes20041028.Enumeration

feedbacktype enumeration:

(Response | Solution | Hint) 'Response’

Defines constants for the above types of feedback. Usage example:

FeedbackType.Decimal

Note that:

FeedbackType.DEFAULT == FeedbackType.Response

For more methods see Enumeration

class pyslet.qtivl.core.FIBType
Bases: pyslet.xsdatatypes20041028.Enumeration

Fill-in-the-blank type enumeration:

(String | Integer | Decimal | Scientific) 'String'

Defines constants for the above fill-in-the-blank types. Usage example:

FIBType.Decimal

Note that:

FIBType.DEFAULT == FIBType.String

For more methods see Enumeration

class pyslet.gtivl.core.MDOperator
Bases: pyslet.xsdatatypes20041028.Enumeration

Metadata operator enumeration for pyslet.gtivl.sao.SelectionMetadata:

(EQ | NEQ | LT | LTE | GT | GTE)

Defines constants for the above operators. Usage example:

MDOperator.EQ

Lower-case aliases of the constants are provided for compatibility.

For more methods see Enumeration

3.2. IMS Question and Test Interoperability (version 1.2) 23

Pyslet Documentation, Release 0.6.20160201

class pyslet.gtivl.core.NumType
Bases: pyslet.xsdatatypes20041028.Enumeration

numtype enumeration:

(Integer | Decimal | Scientific) 'Integer'

Defines constants for the above numeric types. Usage example:

NumType.Scientific

Note that:

NumType.DEFAULT == NumType.Integer

For more methods see Enumeration

class pyslet.gtivl.core.Orientation
Bases: pyslet.xsdatatypes20041028.Enumeration

Orientation enumeration:

(Horizontal | Vertical) '"Horizontal'

Defines constants for the above orientation types. Usage example:

Orientation.Horizontal

Note that:

Orientation.DEFAULT == Orientation.Horizontal

For more methods see Enumeration

pyslet.gtivl.core.MigrateV20Orientation (orientation)
Maps a v1 orientation onto the corresponding v2 constant.

Raises KeyError if orientation is not one of the Orientation constants.

class pyslet.qtivl.core.PromptType
Bases: pyslet.xsdatatypes20041028.Enumeration

Prompt type enumeration:

(Box | Dashline | Asterisk | Underline)

Defines constants for the above prompt types. Usage example:

PromptType.Dashline

For more methods see Enumeration

class pyslet.gtivl.core.RCardinality
Bases: pyslet.xsdatatypes20041028.Enumeration

rcardinality enumeration:

(Single | Multiple | Ordered) 'Single’

Defines constants for the above cardinality types. Usage example:

RCardinality.Multiple

Note that:

24 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

RCardinality.DEFAULT == RCardinality.Single

For more methods see Enumeration

pyslet.gtivl.core.MigrateV2Cardinality (rCardinality)
Maps a vl cardinality onto the corresponding v2 constant.

Raises KeyError if rCardinality is not one of the RCardinality constants.

pyslet.gtivl.core.TestOperator = <class pyslet.qtivl.core. MDOperator>
A simple alias of MDOperator defined for pyslet.gtivl.outcomes.VariableTest

class pyslet.qgtivl.core.VarType
Bases: pyslet.xsdatatypes20041028.Enumeration

vartype enumeration:

(Integer | String | Decimal | Scientific | Boolean | Enumerated | Set) 'Integer’

Defines constants for the above view types. Usage example:

VarType.String

Note that:

VarType.DEFAULT == VarType.Integer

For more methods see Enumeration

pyslet.qgtivl.core.MigrateV2VarType (vartype, log)
Returns the v2 BaseType representing the v1 vartype.

Note that we reduce both Decimal and Scientific to the float types. In version 2 the BaseType values were chosen
to map onto the typical types available in most programming languages. The representation of the number in
decimal or exponent form is considered to be part of the interaction or the presentation rather than part of the
underlying processing model. Although there clearly are use cases where retaining this distinction would have
been an advantage the quality of implementation was likely to be poor and use cases that require a distinction

are now implemented in more cumbersome, but probably more interoperable ways.

Note also that the poorly defined Set type in version 1 maps to an identifier in version 2 on the assumption that

the cardinality will be upgraded as necessary.
Raises KeyError if vartype is not one of the VarType constants.

class pyslet.qtivl.core.View
Bases: pyslet.xsdatatypes20041028.Enumeration

View enumeration:

(All | Administrator | AdminAuthority | Assessor | Author | Candidate |
InvigilatorProctor | Psychometrician | Scorer | Tutor) 'A11l"

Defines constants for the above view types. Usage example:

View.Candidate

Note that:

View.DEFAULT == View.All

In addition to the constants defined in the specification we add two aliases which are in common use:

3.2. IMS Question and Test Interoperability (version 1.2)

25

Pyslet Documentation, Release 0.6.20160201

(Invigilator | Proctor)

For more methods see Enumeration

pyslet.gtivl.core.MigrateV2View (view, log)
Returns a list of v2 view values representing the v1 view.

The use of a list as the return type enables mapping of the special value ‘All’, which has no direct equivalent in
version 2 other than providing all the defined views.

Raises KeyError if view is not one of the View constants.

This function will log warnings when migrating the following v1 values: Administrator, AdminAuthority, As-
sessor and Psychometrician

Utility Functions

pyslet.gtivl.core.MakeValidName (name)
This function takes a string that is supposed to match the production for Name in XML and forces it to comply
by replacing illegal characters with ‘_’. If name starts with a valid name character but not a valid name start
character, it is prefixed with °_’ too.

pyslet.gtivl.core.ParseYesNo (src)
Returns a True/False parsed from a “Yes” / “No” string.

This function is generous in what it accepts, it will accept mixed case and strips surrounding space. It returns
True if the resulting string matches “yes” and False otherwise.

Reverses the transformation defined by Format YesNo ().

pyslet.gtivl.core.FormatYesNo (value)
Returns “Yes” if value is True, “No” otherwise.

Reverses the transformation defined by ParseYesNo ().

Constants
pyslet.gtivl.core.QTI_SOURCE = ‘QTIvl’
str(object="") -> string

Return a nice string representation of the object. If the argument is a string, the return value is the same object.

Exceptions
class pyslet.qtivl.core.QTIError
Bases: exceptions.Exception
All errors raised by this module are derived from QTIError.

class pyslet.gtivl.core.QTIUnimplementedError
Bases: pyslet.qgtivl.core.QTIError

A feature of QTI vl that is not yet implemented by this module.

26 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

Abstract Elements

class pyslet.qgtivl.core.QTIElement (parent, name=None)
Bases: pyslet.xml120081126.structures.Element
Base class for all elements defined by the QTI specification

DeclareMetadata (label, entry, definition=None)
Declares a piece of metadata to be associated with the element.

Most QTIElements will be contained by some type of metadata container that collects metadata in a format
suitable for easy lookup and export to other metadata formats. The default implementation simply passes
the call to the parent element or, if there is no parent, the declaration is ignored.

For more information see MetadataContainer.

class pyslet.qgtivl.core.ObjectMixin
Mix-in class for elements that can be inside Ob jectBank:

(section | item)+

class pyslet.qtivl.core.SectionItemMixin
Mix-in class for objects that can be in section objects:

(itemref | item | sectionref | section)*

class pyslet.qtivl.core.SectionMixin
Bases: pyslet.qtivl.core.SectionItemMixin

Mix-in class for objects that can be in assessment objects:

(sectionref | section)+

3.2.2 Common Classes

This module contains the common data elements defined in section 3.6 of the binding document. The doc string of
each element defined by IMS is introduced with a quote from that document to provide context. For more information
see: http://www.imsglobal.org/question/qtiv1p2/imsqti_asi_bindv1p2.html

Content Model

Perhaps the biggest change between version 1 and version 2 of the specification was the content model. There were
attempts to improve the original model through the introduction of the flow concept in version 1.2 but it wasn’t until
the externally defined HTML content model was formally adopted in version 2 that some degree of predictability in
rendering became possible.

class pyslet.qtivl.common.ContentMixin
Mixin class for handling all content-containing elements.

This class is used by all elements that behave as content, the default implementation provides an additional
contentChildren member that should be used to collect any content-like children.

contentChildren = None
the list of content children

ContentMixin (childClass)
Creates a new ContentMixin child of this element.

3.2. IMS Question and Test Interoperability (version 1.2) 27

http://www.imsglobal.org/question/qtiv1p2/imsqti_asi_bindv1p2.html

Pyslet Documentation, Release 0.6.20160201

This factory method is called by the parser when it finds an element that is derived from ContentMixin.
By default we accept any type of content but derived classes override this behaviour to limit the range of
elements to match their content models.

GetContentChildren ()
Returns an iterable of the content children.

IsInline ()
True if this element can be inlined, False if it is block level

The default implementation returns True if all contentChildren can be inlined.

InlineChildren ()
True if all of this element’s contentChildren can all be inlined.

ExtractText ()
Returns a tuple of (<text string>, <lang>).

Sometimes it is desirable to have a plain text representation of a content object. For example, an element
may permit arbitrary content but a synopsis is required to set a metadata value.

Our algorithm for determining the language of the text is to first check if the language has been specified
for the context. If it has then that language is used. Otherwise the first language attribute encountered in
the content is used as the language. If no language is found then None is returned as the second value.

MigrateV2Content (parent, childType, log, children=None)
Migrates this content element to QTIv2.

The resulting QTIv2 content is added to parent.

childType indicates whether the context allows block, inline or a mixture of element content types
(flow). It is set to one of the following HTML classes: pyslet .htm140_19991224 .BlockMixin,
pyslet.html40_19991224.InlineMixinorpyslet.html40_19991224.FlowMixin.

The default implementation adds each of children or, if children is None, each of the local
contentChildren. The algorithm handles flow elements by creating <p> elements where the con-
text permits. Nested flows are handled by the addition of
.

class pyslet.gtivl.common.Material (parent)
Bases: pyslet.qtivl.common.QTICommentContainer,pyslet.qtivl.common.ContentMixin

This is the container for any content that is to be displayed by the question-engine. The supported content
types are text (emphasized or not), images, audio, video, application and applet. The content can be internally
referenced to avoid the need for duplicate copies. Alternative information can be defined - this is used if the
primary content cannot be displayed:

<!ELEMENT material (gticomment? , (mattext | matemtext | matimage |
mataudio | matvideo | matapplet | matapplication | matref | matbreak
| mat_extension)+ , altmaterialx)>

<!ATTLIST material
label CDATA #IMPLIED
xml:lang CDATA #IMPLIED >

class pyslet.gtivl.common.AltMaterial (parent)
Bases: pyslet.qgtivl.common.QTICommentContainer,pyslet.qgtivl.common.ContentMixin

This is the container for alternative content. This content is to be displayed if, for whatever reason, the primary
content cannot be rendered. Alternative language implementations of the host <material> element are also
supported using this structure:

<!ELEMENT altmaterial (gticomment? ,
(mattext | matemtext | matimage | mataudio | matvideo |

28 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

matapplet | matapplication | matref | matbreak | mat_extension)+)>
<!ATTLIST altmaterial xml:lang CDATA #IMPLIED >

class pyslet.gtivl.common.MatThingMixin
Bases: pyslet.qgtivl.common.ContentMixin

An abstract class used to help identify the mat* elements.

class pyslet.gtivl.common.PositionMixin
Mixin to define the positional attributes

width CDATA #IMPLIED
height CDATA #IMPLIED
yO0 CDATA #IMPLIED
x0 CDATA #IMPLIED

class pyslet.qgtivl.common.MatText (parent)
Bases: pyslet.qgtivl.core.QTIElement, pyslet.qgtivl.common.PositionMixin,
pyslet.qtivl.common.MatThingMixin

The <mattext> element contains any text that is to be displayed to the users

<!ELEMENT mattext (#PCDATA)>
<!ATTLIST mattext

texttype CDATA ‘'text/plain'

label CDATA #IMPLIED
charset CDATA 'ascii-us'
uri CDATA #IMPLIED
xml : space (preserve | default) 'default'
xml:lang CDATA #IMPLIED

entityref ENTITY #IMPLIED

width CDATA #IMPLIED
height CDATA #IMPLIED
4 CDATA #IMPLIED
x0 CDATA #IMPLIED >

inlineWrapper = None
an inline html object used to wrap inline elements

class pyslet.qgtivl.common.MatEmText (parent)
Bases: pyslet.qgtivl.common.MatText

The <matemtext> element contains any emphasized text that is to be displayed to the users. The type of emphasis
is dependent on the question-engine rendering the text:

<!ELEMENT matemtext (#PCDATA)>
<!ATTLIST matemtext

texttype CDATA 'text/plain'

label CDATA #IMPLIED
charset CDATA 'ascii-us'
uri CDATA #IMPLIED
xml:space (preserve | default) 'default'
xml:lang CDATA #IMPLIED

entityref ENTITY #IMPLIED

width CDATA #IMPLIED
height CDATA #IMPLIED
yO0 CDATA #IMPLIED
x0 CDATA #IMPLIED >

class pyslet.qgtivl.common.MatBreak (parent)
Bases: pyslet.qtivl.core.QTIElement, pyslet.qgtivl.common.MatThingMixin

3.2. IMS Question and Test Interoperability (version 1.2) 29

Pyslet Documentation, Release 0.6.20160201

The element that is used to insert a break in the flow of the associated material. The nature of the ‘break’ is

dependent on the display-rendering engine:

<!ELEMENT matbreak EMPTY>

ExtractText ()
Returns a simple line break

class pyslet.gtivl.common.MatImage (parent)

Bases: pyslet.gtivl.core.QTIElement, pyslet.qgtivl.common.PositionMixin,

pyslet.gtivl.common.MatThingMixin

The <matimage> element is used to contain image content that is to be displayed to the users:

<!ELEMENT matimage (#PCDATA)>
<!ATTLIST matimage

imagtype CDATA 'image/]jpeg'
label CDATA #IMPLIED
height CDATA #IMPLIED
uri CDATA #IMPLIED
embedded CDATA 'baseb64'

width CDATA #IMPLIED
4 CDATA #IMPLIED
x0 CDATA #IMPLIED

entityref ENTITY #IMPLIED >

ExtractText ()
We cannot extract text from matimage so we return a simple string.

class pyslet.gtivl.common.MatAudio (parent)
Bases: pyslet.qgtivl.core.QTIElement, pyslet.qgtivl.common.MatThingMixin

The <mataudio> element is used to contain audio content that is to be displayed to the users:

<!ELEMENT mataudio (#PCDATA)>
<!ATTLIST mataudio
audiotype CDATA 'audio/base'

label CDATA #IMPLIED
uri CDATA #IMPLIED
embedded CDATA 'base64'

entityref ENTITY #IMPLIED >

ExtractText ()
We cannot extract text from mataudio so we return a simple string.

class pyslet.gtivl.common.MatVideo (parent)

Bases: pyslet.qtivl.core.QTIElement, pyslet.qgtivl.common.PositionMixin,

pyslet.qgtivl.common.MatThingMixin

The <matvideo> element is used to contain video content that is to be displayed to the users:

<!ELEMENT matvideo (#PCDATA)>
<!ATTLIST matvideo
videotype CDATA 'video/avi'

label CDATA #IMPLIED
uri CDATA #IMPLIED
width CDATA #IMPLIED
height CDATA #IMPLIED
y0 CDATA #IMPLIED
%0 CDATA #IMPLIED

30 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

embedded CDATA 'baseo64d'
entityref ENTITY #IMPLIED >

ExtractText ()
We cannot extract text from matvideo so we return a simple string.

class pyslet.gtivl.common.MatApplet (parent)
Bases: pyslet.qtivl.core.QTIElement, pyslet.qtivl.common.PositionMixin,
pyslet.qgtivl.common.MatThingMixin

The <matapplet> element is used to contain applet content that is to be displayed to the users. Parameters that
are to be passed to the applet being launched should be enclosed in a CDATA block within the content of the
<matapplet> element:

<!ELEMENT matapplet (#PCDATA)>
<!ATTLIST matapplet

label CDATA #IMPLIED
uri CDATA #IMPLIED
y0 CDATA #IMPLIED
height CDATA #IMPLIED
width CDATA #IMPLIED
x0 CDATA #IMPLIED

embedded CDATA 'baseb64'
entityref ENTITY #IMPLIED >

ExtractText ()
We cannot extract text from matapplet so we return a simple string.

class pyslet.gtivl.common.MatApplication (parent)
Bases: pyslet.gtivl.core.QTIElement, pyslet.qgtivl.common.MatThingMixin

The <matapplication> element is used to contain application content that is to be displayed to the users. Param-
eters that are to be passed to the application being launched should be enclosed in a CDATA block within the
content of the <matapplication> element:

<!ELEMENT matapplication (#PCDATA)>
<!ATTLIST matapplication

apptype CDATA #IMPLIED
label CDATA #IMPLIED
uri CDATA #IMPLIED

embedded CDATA 'baseo64d'
entityref ENTITY #IMPLIED >

ExtractText ()
We cannot extract text from matapplication so we return a simple string.

class pyslet.gtivl.common.MatRef£ (parent)
Bases: pyslet.qgtivl.common.MatThingMixin, pyslet.qtivl.core.QTIElement

The <matref> element is used to contain a reference to the required material. This material will have had an
identifier assigned to enable such a reference to be reconciled when the instance is parsed into the system.
<matref> should only be used to reference a material component and not a <material> element (the element
<material_ref> should be used for the latter):

<!ELEMENT matref EMPTY>
<!ATTLIST matref linkrefid CDATA #REQUIRED >

class pyslet.gtivl.common.MatExtension (parent, name=None)
Bases: pyslet.qtivl.core.QTIElement, pyslet.qgtivl.common.MatThingMixin

The extension facility to enable proprietary types of material to be included with the corresponding data object:

3.2. IMS Question and Test Interoperability (version 1.2) 31

Pyslet Documentation, Release 0.6.20160201

<!ELEMENT mat_extension ANY>

class pyslet.qgtivl.common.FlowMixin

Mix-in class to identify all flow elements:

(flow | flow_mat | flow_label)

class pyslet.gtivl.common.FlowMatContainer (parent)
Bases: pyslet.qgtivl.common.QTICommentContainer,pyslet.qgtivl.common.ContentMixin

Abstract class used to represent objects that contain flow_mat:

<!ELEMENT XXXXXXXXXX (gticomment? , (material+ | flow_mat+))>

class pyslet.qtivl.common.FlowMat (parent)

Bases: pyslet.qgtivl.common.FlowMatContainer, pyslet.qtivl.common.FlowMixin

This element allows the materials to be displayed to the users to be grouped together using flows. The manner
in which these flows are handled is dependent upon the display-engine:

<!ELEMENT flow_mat (gticomment? , (flow_mat | material | material_ref)+)>
<!ATTLIST flow_mat class CDATA 'Block' >

IsInline ()
flowmat is always treated as a block if flowClass is specified, otherwise it is treated as a block unless it is
an only child.

MigrateV2Content (parent, childType, log)
flow typically maps to a div element.

A flow with a specified class always becomes a div.

class pyslet.qgtivl.common.PresentationMaterial (parent)

Bases: pyslet.qgtivl.common.FlowMatContainer

This is material that must be presented to set the context of the parent evaluation. This could be at the Sec-
tion level to contain common question material that is relevant to all of the contained Sections/Items. All the
contained material must be presented:

<!ELEMENT presentation_material (gticomment? , flow_mat+)>

Our interpretation is generous here, we also accept <material> by default from FlowMatContainer. This
element is one of the newer definitions in QTI v1, after the introduction of <flow>. It excludes <material>
because it was assumed there would no legacy content. Adoption of flow was poor and it was replaced with
direct inclusion of the html model in version 2 (where content is either inline or block level and flow is a general
term to describe both for contexts where either is allowed).

class pyslet.qgtivl.common.Reference (parent)
Bases: pyslet.gtivl.common.QTICommentContainer,pyslet.qgtivl.common.ContentMixin

The container for all of the materials that can be referenced by other structures e.g. feedback material, presen-
tation material etc. The presentation of this material is under the control of the structure that is referencing the
material. There is no implied relationship between any of the contained material components:

<!ELEMENT reference (gticomment? , (material | mattext | matemtext | matimage | mat
matvideo | matapplet | matapplication | matbreak | mat_extension)+)>

ContentMixin (childClass)
We override this method to prevent references from being included.

32

Chapter 3. IMS Global Learning Consortium Specifications

audio

Pyslet Documentation, Release 0.6.20160201

class pyslet.gtivl.common.MaterialRef (parent)
Bases: pyslet.qtivl.core.QTIElement

The <material_ref> element is used to contain a reference to the required full material block. This material will

have had an identifier assigned to enable such a reference to be reconciled when the instance is parsed into the
system:

<!ELEMENT material_ref EMPTY>
<!ATTLIST material_ref linkrefid CDATA #REQUIRED >

Metadata Model

class pyslet.qtivl.common.MetadataContainerMixin
A mix-in class used to hold dictionaries of metadata.

There is a single dictionary maintained to hold all metadata values, each value is a list of tuples of the form

(value string, defining element). Values are keyed on the field label or tag name with any leading qmd_ prefix
removed.

class pyslet.qtivl.common.QTIMetadata (parent)
Bases: pyslet.qgtivl.core.QTIElement

The container for all of the vocabulary-based QTI-specific meta-data. This structure is available to each of the
four core ASI data structures:

<!ELEMENT gtimetadata (vocabulary? , gtimetadatafield+)>

class pyslet.qgtivl.common.Vocabulary (parent)
Bases: pyslet.qgtivl.core.QTIElement

The vocabulary to be applied to the associated meta-data fields. The vocabulary is defined either using an
external file or it is included as a comma separated list:

<!ELEMENT vocabulary (#PCDATA)>

<!ATTLIST vocabulary
uri CDATA #IMPLIED
entityref ENTITY #IMPLIED
vocab_type CDATA #IMPLIED >

class pyslet.gtivl.common.QTIMetadataField (parent)
Bases: pyslet.qgtivl.core.QTIElement

The structure responsible for containing each of the QTI-specific meta-data fields:

<!ELEMENT gtimetadatafield (fieldlabel , fieldentry)>
<!ATTLIST gtimetadatafield =xml:lang CDATA #IMPLIED >

class pyslet.qgtivl.common.FieldLabel (parent, name=None)
Bases: pyslet.qtivl.core.QTIElement

Used to contain the name of the QTI-specific meta-data field:

<!ELEMENT fieldlabel (#PCDATA)>

class pyslet.gtivl.common.FieldEntry (parent, name=None)
Bases: pyslet.qgtivl.core.QTIElement

Used to contain the actual data entry of the QTI-specific meta-data field named using the associated ‘fieldlabel’
element:

3.2. IMS Question and Test Interoperability (version 1.2) 33

Pyslet Documentation, Release 0.6.20160201

<!ELEMENT fieldentry (#PCDATA)>

Objectives & Rubric

class pyslet.qgtivl.common.Objectives (parent)
Bases: pyslet.qgtivl.common.FlowMatContainer

The objectives element is used to store the information that describes the educational aims of the Item. These
objectives can be defined for each of the different ‘view’ perspectives. This element should not be used to
contain information specific to an Item because the question-engine may not make this information available to
the Item during the actual test:

<!ELEMENT objectives (gticomment? , (material+ | flow_mat+))>

<!ATTLIST objectives wview (All | Administrator | AdminAuthority | Assessor | Auth
Candidate | InvigilatorProctor | Psychometrician | Scorer |
Tutor) 'All' >

MigrateV2 (v2item, log)
Adds rubric representing these objectives to the given item’s body

LRMMigrateObjectives (lom, log)
Adds educational description from these objectives.

class pyslet.qgtivl.common.Rubric (parent)
Bases: pyslet.qtivl.common.FlowMatContainer

The rubric element is used to contain contextual information that is important to the element e.g. it could contain
standard data values that might or might not be useful for answering the question. Different sets of rubric can
be defined for each of the possible ‘views’. The material contained within the rubric must be displayed to the

participant:
<!ELEMENT rubric (gticomment? , (material+ | flow_mat+))>
<!ATTLIST rubric view (All | Administrator | AdminAuthority | Assessor | Auth
Candidate | InvigilatorProctor | Psychometrician | Scorer |
Tutor) 'All' >
Response Processing Model
class pyslet.qgtivl.common.DecVar (parent)
Bases: pyslet.qgtivl.core.QTIElement
The <decvar> element permits the declaration of the scoring variables
<!ELEMENT decvar (#PCDATA) >
<!ATTLIST decvar varname CDATA 'SCORE'
vartype (Integer | String | Decimal | Scientific | Boolean
Enumerated | Set) 'Integer’
defaultval CDATA #IMPLIED
minvalue CDATA #IMPLIED
maxvalue CDATA #IMPLIED
members CDATA #IMPLIED
cutvalue CDATA #IMPLIED >

content_changed ()

The decvar element is supposed to be empty but QTI v1 content is all over the place.

34

Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

class pyslet.gtivl.common.InterpretVar (parent)
Bases: pyslet.qtivl.core.QTIElement, pyslet.qgtivl.common.ContentMixin

The <interpretvar> element is used to provide statistical interpretation information about the associated vari-

ables:
<!ELEMENT interpretvar (material | material_ref)>
<!ATTLIST interpretvar
view (A1l | Administrator | AdminAuthority | Assessor | Author | Can
InvigilatorProctor | Psychometrician | Scorer | Tutor) 'A11"

varname CDATA 'SCORE' >

class pyslet.qgtivl.common.SetVar (parent)
Bases: pyslet.qgtivl.core.QTIElement

The <setvar> element is responsible for changing the value of the scoring variable as a result of the associated
response processing test:

<!ELEMENT setvar (#PCDATA)>
<!ATTLIST setvar varname CDATA 'SCORE'
action (Set | Add | Subtract | Multiply | Divide) 'Set!' >

class pyslet.gtivl.common.DisplayFeedback (parent)
Bases: pyslet.qgtivl.core.QTIElement

The <displayfeedback> element is responsible for assigning an associated feedback to the response processing
if the ‘“True’ state is created through the associated response processing condition test:

<!ELEMENT displayfeedback (#PCDATA)>

<!ATTLIST displayfeedback
feedbacktype (Response | Solution | Hint) 'Response’
linkrefid CDATA #REQUIRED >

class pyslet.gtivl.common.ConditionVar (parent)
Bases: pyslet.qtivl.core.QTIElement

The conditional test that is to be applied to the user’s response. A wide range of separate and combinatorial test

can be applied:

<!ELEMENT conditionvar (not | and | or | unanswered | other | varequal | varlt |
varlte | vargt | vargte | varsubset | varinside | varsubstring | durequal |
durlt | durlte | durgt | durgte | var_extension)+>

class pyslet.gtivl.common.ExtendableExpressionMixin
Abstract mixin class to indicate an expression, including var_extension

class pyslet.qtivl.common.ExpressionMixin
Bases: pyslet.qgtivl.common.ExtendableExpressionMixin

Abstract mixin class to indicate an expression excluding var_extension

class pyslet.qgtivl.common.VarThing (parent)
Bases: pyslet.qgtivl.core.QTIElement, pyslet.qgtivl.common.ExpressionMixin

Abstract class for var* elements

<!ATTLIST =
respident CDATA #REQUIRED
index CDATA #IMPLIED >

class pyslet.gtivl.common.VarEqual (parent)
Bases: pyslet.qgtivl.common.VarThing

3.2. IMS Question and Test Interoperability (version 1.2) 35

didate

Pyslet Documentation, Release 0.6.20160201

The <varequal> element is the test of equivalence. The data for the test is contained within the element’s

PCDATA string and must be the same as one of the <response_label> values (this were assigned using the ident
attribute):

<!ELEMENT varequal (#PCDATA)>
<!ATTLIST varequal
case (Yes | No) 'No'
respident CDATA #REQUIRED"
index CDATA #IMPLIED >

class pyslet.qgtivl.common.VarInequality (parent)

Bases: pyslet.qgtivl.common.VarThing
Abstract class for varlt, varlte, vargt and vargte.

MigrateV2Inequality ()
Returns the class to use in qtiv2

class pyslet.qgtivl.common.VarLT (parent)

Bases: pyslet.qgtivl.common.VarInequality

The <varlt> element is the ‘less than’ test. The data for the test is contained within the element’s PCDATA string
and is assumed to be numerical in nature:

<!ELEMENT varlt (#PCDATA)>
<!ATTLIST varlt
respident CDATA #REQUIRED"
index CDATA #IMPLIED >

class pyslet.qgtivl.common.VarLTE (parent)

Bases: pyslet.qtivl.common.VarInequality

The <varlte> element is the ‘less than or equal’ test. The data for the test is contained within the element’s
PCDATA string and is assumed to be numerical in nature:

<!ELEMENT varlte (#PCDATA)>
<!ATTLIST varlte
respident CDATA #REQUIRED"
index CDATA #IMPLIED >

class pyslet.qgtivl.common.VarGT (parent)

Bases: pyslet.gtivl.common.VarInequality

The <vargt> element is the ‘greater than’ test. The data for the test is contained within the element’s PCDATA
string and is assumed to be numerical in nature:

<!ELEMENT vargt (#PCDATA)>
<!ATTLIST vargt
respident CDATA #REQUIRED"
index CDATA #IMPLIED >

class pyslet.qgtivl.common.VarGTE (parent)

Bases: pyslet.qgtivl.common.VarInequality

The <vargte> element is the ‘greater than or equal to’ test. The data for the test is contained within the element’s
PCDATA string and is assumed to be numerical in nature:

<!ELEMENT vargte (#PCDATA)>
<!ATTLIST vargte
respident CDATA #REQUIRED"
index CDATA #IMPLIED >

36

Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

class pyslet.qgtivl.common.VarSubset (parent, name=None)
Bases: pyslet.qtivl.core.QTIElement, pyslet.qgtivl.common.ExpressionMixin

The <varsubset> element is the ‘member of a list/set’ test. The data for the test is contained within the element’s
PCDATA string. The set is a comma separated list with no enclosing parentheses:

<!ELEMENT varsubset (#PCDATA)>

<!ATTLIST varsubset
respident CDATA #REQUIRED"
setmatch (Exact | Partial) 'Exact’
index CDATA #IMPLIED >

class pyslet.qtivl.common.VarSubString (parent, name=None)
Bases: pyslet.qgtivl.core.QTIElement, pyslet.qgtivl.common.ExpressionMixin

The <varsubstring> element is used to determine if a given string is a substring of some other string:

<!ELEMENT varsubstring (#PCDATA)>
<!ATTLIST varsubstring
index CDATA #IMPLIED
respident CDATA #REQUIRED"
case (Yes | No) 'No' >

class pyslet.qgtivl.common.VarInside (parent)
Bases: pyslet.qgtivl.common.VarThing

The <varinside> element is the ‘xy-co-ordinate inside an area’ test. The data for the test is contained within the
element’s PCDATA string and is a set of co-ordinates that define the area:

<!ELEMENT varinside (#PCDATA)>

<!ATTLIST varinside
areatype (Ellipse | Rectangle | Bounded) #REQUIRED
respident CDATA #REQUIRED"
index CDATA #IMPLIED >

class pyslet.qgtivl.common.DurEqual (parent, name=None)
Bases: pyslet.qgtivl.core.QTIElement, pyslet.qgtivl.common.ExpressionMixin

The <durequal> element is the ‘duration equal to’ test i.e. a test on the time taken to make the response:

<!ELEMENT durequal (#PCDATA)>
<!ATTLIST durequal
index CDATA #IMPLIED
respident CDATA #REQUIRED" >

class pyslet.qgtivl.common .DurLT (parent, name=None)
Bases: pyslet.qtivl.core.QTIElement, pyslet.qtivl.common.ExpressionMixin

The <durlt> element is the ‘duration less than’ test i.e. a test on the time taken to make the response:

<!ELEMENT durlt (#PCDATA)>

<!ATTLIST durlt
index CDATA #IMPLIED
respident CDATA #REQUIRED" >

class pyslet.qgtivl.common.DurLTE (parent, name=None)
Bases: pyslet.qgtivl.core.QTIElement, pyslet.qgtivl.common.ExpressionMixin

The <durlte> element is the ‘duration less than or equal to’ test i.e. a test on the time taken to make the response:

<!ELEMENT durlte (#PCDATA)>
<!ATTLIST durlte

3.2. IMS Question and Test Interoperability (version 1.2) 37

Pyslet Documentation, Release 0.6.20160201

index CDATA #IMPLIED
respident CDATA #REQUIRED" >

class pyslet.qgtivl.common.DurGT (parent, name=None)
Bases: pyslet.qgtivl.core.QTIElement, pyslet.qgtivl.common.ExpressionMixin

The <durgt> element is the ‘duration greater than’ test i.e. a test on the time taken to make the response:

<!ELEMENT durgt (#PCDATA)>

<!ATTLIST durgt
index CDATA #IMPLIED
respident CDATA #REQUIRED" >

class pyslet.qgtivl.common .DurGTE (parent, name=None)
Bases: pyslet.qgtivl.core.QTIElement, pyslet.qtivl.common.ExpressionMixin

The <durgte> element is the ‘duration greater than or equal to’ test i.e. a test on the time taken to make the
response:

<!ELEMENT durgte (#PCDATA)>

<!ATTLIST durgte
index CDATA #IMPLIED
respident CDATA #REQUIRED" >

class pyslet.gtivl.common.Not (parent)
Bases: pyslet.qtivl.core.QTIElement, pyslet.qtivl.common.ExpressionMixin

The <not> element inverts the logical test outcome that is required. In the case of the <varequal> element
produces a ‘not equals’ test:

<!ELEMENT not (and | or | not | unanswered | other | varequal | varlt | varlte |
vargt | vargte | varsubset | varinside | varsubstring | durequal | durlt |
durlte | durgt | durgte)>

class pyslet.qgtivl.common.And (parent)
Bases: pyslet.qtivl.core.QTIElement, pyslet.qtivl.common.ExpressionMixin

The <and> element is used to create the Boolean ‘AND’ operation between the two or more enclosed tests. The
result ‘True’ is returned if all of the tests return a ‘“True’ value:

<!ELEMENT and (not | and | or | unanswered | other | varequal | varlt | varlte |
vargt | vargte | varsubset | varinside | varsubstring | durequal | durlt |
durlte | durgt | durgte)+>

class pyslet.qgtivl.common.Or (parent)
Bases: pyslet.qgtivl.core.QTIElement, pyslet.qgtivl.common.ExpressionMixin

The <or> element is used to create the Boolean ‘OR’ operation between the two or more enclosed tests. The
result “True’ is returned if one or more of the tests return a ‘True’ value:

<!ELEMENT or (not | and | or | unanswered | other | varequal | varlt | varlte |
vargt | vargte | varsubset | varinside | varsubstring | durequal | durlt |
durlte | durgt | durgte)+>

class pyslet.qtivl.common.Unanswered (parent, name=None)
Bases: pyslet.qtivl.core.QTIElement, pyslet.qtivl.common.ExpressionMixin

The <unanswered> element is the condition to be applied if a response is not received for the Item i.e. it is
unanswered:

38 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

<!ELEMENT unanswered (#PCDATA)>
<!ATTLIST unanswered respident CDATA #REQUIRED" >

class pyslet.qgtivl.common.Other (parent, name=None)
Bases: pyslet.qgtivl.core.QTIElement, pyslet.qgtivl.common.ExpressionMixin

The <other> element is used to trigger the condition when all of the other tests have not returned a ‘“True’ state:

<!ELEMENT other (#PCDATA)>

class pyslet.qtivl.common.VarExtension (parent, name=None)
Bases: pyslet.qtivl.core.QTIElement,pyslet.qtivl.common.ExtendableExpressionMixin

This element contains proprietary extensions to be applied to condition tests. This enables vendors to create
their own conditional tests to be used on the participant responses:

<!ELEMENT var_extension ANY>

Miscellaneous Classes

class pyslet.qtivl.common.QTICommentContainer (parent)
Bases: pyslet.qtivl.core.QTIElement

Basic element to represent all elements that can contain a comment as their first child:

<!ELEMENT XXXXXXXXXXXX (gticomment? ,) >

class pyslet.gtivl.common.QTIComment (parent, name=None)
Bases: pyslet.gtivl.core.QTIElement

This element contains the comments that are relevant to the host element. The comment is contained as a string:

<!ELEMENT gticomment (#PCDATA)>
<!ATTLIST gticomment xml:lang CDATA #IMPLIED >

class pyslet.gtivl.common.Duration (parent, name=None)
Bases: pyslet.qtivl.core.QTIElement

The duration permitted for the completion of a particular activity. The duration is defined as per the ISO8601
standard. The information is entered as a string:

<!ELEMENT duration (#PCDATA)>

class pyslet.imsqtivlp2pl.QTIDocument (**args)
Bases: pyslet.xml120081126.structures.Document

Class for working with QTI documents.

We turn off the parsing of external general entities to prevent a missing DTD causing the parse to fail. This is
a significant limitation as it is possible that some sophisticated users have used general entities to augment the
specification or to define boiler-plate code. If this causes problems then you can turn the setting back on again
for specific instances of the parser that will be used with that type of data.

XMLParser (entity)
Adds some options to the basic XMLParser to improve QTI compatibility.

get_element_class (name)
Returns the class to use to represent an element with the given name.

This method is used by the XML parser. The class object is looked up in the classMap, if no specialized
class is found then the general pyslet .xm120081126.Element class is returned.

3.2. IMS Question and Test Interoperability (version 1.2) 39

Pyslet Documentation, Release 0.6.20160201

RegisterMatThing (matThing)
Registers a MatThing instance in the dictionary of matThings.

FindMatThing (linkRefID)
Returns the mat<thing> element with label matching the linkRefID.

The specification says that material_ref should be used if you want to refer a material object, not matref,
however this rule is not universally observed so if we don’t find a basic mat<thing> we will search the
material objects too and return a Material instance instead.

RegisterMaterial (material)
Registers a Material instance in the dictionary of labelled material objects.

FindMaterial (linkRefID)
Returns the material element with label matching linkRefID.

Like FindMat Thing () this method will search for instances of Mat ThingMixin if it can’t find a
Material element to match. The specification is supposed to be strict about matching the two types of
reference but errors are common, even in the official example set.

MigrateV2 (cp)
Converts the contents of this document to QTI v2

The output is stored into the content package passed in cp. Errors and warnings generated by the migration
process are added as annotations to the resulting resource objects in the content package.

The function returns a list of 4-tuples, one for each object migrated.

Each tuple comprises (<QTI v2 Document>, <LOM Metadata>, <log>, <Resource>)

3.2.3 QuesTestinterop Elements

class pyslet.imsgtivlp2pl.QuesTestInterop (parent)

Bases: pyslet.qgtivl.common.QTICommentContainer

The <questestinterop> element is the outermost container for the QTI contents i.e. the container of the Assess-
ment(s), Section(s) and Item(s):

<!ELEMENT questestinterop (gticomment? , (objectbank | assessment | (section | iteﬂ)+))>

MigrateV2 ()
Converts this element to QTI v2

Returns a list of tuples of the form: (<QTIv2 Document>, <Metadata>, <List of Log Messages>).

One tuple is returned for each of the objects found. In QTIv2 there is no equivalent of QuesTestInterop.
The baseURI of each document is set from the baseURI of the QuesTestInterop element using the object
identifier to derive a file name.

3.2.4 Object Bank Elements

class pyslet.imsgtivlp2pl.ObjectBank (parent)

Bases: pyslet.qtivl.common.MetadataContainerMixin,pyslet.qtivl.common.QTICommentContaines

This is the container for the Section(s) and/or Item(s) that are to be grouped as an object-bank. The object-bank
is assigned its own unique identifier and can have the full set of QTI-specific meta-data:

<!ELEMENT objectbank (gticomment? , gtimetadatax , (section | item)+)>
<!ATTLIST objectbank ident CDATA #REQUIRED >

40

Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

3.2.5 Assessment Elements

class pyslet.imsqtivlp2pl.Assessment (parent)
Bases: pyslet.qgtivl.common.QTICommentContainer

The Assessment data structure is used to contain the exchange of test data structures. It will always contain at
least one Section and may contain meta-data, objectives, rubric control switches, assessment-level processing,
feedback and selection and sequencing information for sections:

<!ELEMENT assessment (gticomment? ,
duration? ,
gtimetadatax ,
objectivesx* ,
assessmentcontrolx ,
rubricx* ,
presentation_material? ,
outcomes_processing* ,
assessproc_extension? ,
assessfeedback~* ,
selection_ordering? ,
reference? ,
(sectionref | section)+
) >
<!ATTLIST assessment ident CDATA #REQUIRED
$I_Title;
xml:lang CDATA #IMPLIED >

MigrateV2 (output)
Converts this assessment to QTT v2

For details, see QuesTestInterop.MigrateV2.

class pyslet.imsgtivlp2pl.AssessmentControl (parent)
Bases: pyslet.gtivl.common.QTICommentContainer

The control switches that are used to enable or disable the display of hints, solutions and feedback within the

Assessment:
<!ELEMENT assessmentcontrol (gticomment?)>
<!ATTLIST assessmentcontrol
hintswitch (Yes | No) 'Yes'
solutionswitch (Yes | No) 'Yes'
view (A1l | Administrator | AdminAuthority | Assessor | Author |
Candidate | InvigilatorProctor | Psychometrician | Scorer |
Tutor) 'All'
feedbackswitch (Yes | No) 'Yes!' >

class pyslet.imsqgtivlp2pl.AssessProcExtension (parent, name=None)
Bases: pyslet.qtivl.core.QTIElement

This is used to contain proprietary alternative Assessment-level processing functionality:

<!ELEMENT assessproc_extension ANY>

class pyslet.imsqtivlp2pl.AssessFeedback (parent)
Bases: pyslet.gtivl.common.QTICommentContainer,pyslet.qgtivl.common.ContentMixin

The container for the Assessment-level feedback that is to be presented as a result of Assessment-level process-
ing of the user responses:

3.2. IMS Question and Test Interoperability (version 1.2) 41

Pyslet Documentation, Release 0.6.20160201

<!ELEMENT assessfeedback

<!ATTLIST assessfeedback
(A1l | Administrator | AdminAuthority | Assessor | Author |
Candidate | InvigilatorProctor | Psychometrician | Scorer |

view

Tutor

(gticomment? , (material+ | flow_mat+))>

) 'ALLl'

ident CDATA #REQUIRED
title CDATA #IMPLIED >

3.3 IMS Question and Test Interoperability (version 2.1)

The IMS Question and Test Interoperability specification version 2.1 has yet to be finalized and is currently only
available as a “Public Draft Specification” from the IMS GLC website: http://www.imsglobal.org/question/index.html

Version 2.1 is an extension of the pre-existing version 2.0 which was finalized in 2005. For more information on the
history of the specification see http://en.wikipedia.org/wiki/QTI

This module implements version 2.1 of the specification in anticipation of the finalization of the specification by the

consortium.

3.3.1 ltems

class pyslet.qtiv2.items.AssessmentItem (parent)
Bases: pyslet.qgtiv2.core.QTIElement,pyslet.qgtiv2.core.DeclarationContainer

An assessment item encompasses the information that is presented to a candidate and information about how to

score the item:

<xsd:attributeGroup name="assessmentItem.AttrGroup">

<xsd

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

rattribute
attribute
attribute
attribute
attribute name="
attribute
attribute
attribute

</xsd:attributeGroup>

name="identifier" type="string.Type" use="required"/>
name="title" type="string.Type" use="required"/>
name="label" type="string256.Type" use="optional"/>
ref="xml:lang"/>

adaptive" type="boolean.Type" use="required"/>

name="timeDependent" type="boolean.Type" use="required"/>
name="toolName" type="string256.Type" use="optional"/>
name="toolVersion" type="string256.Type" use="optional"/>

<xsd:group name="assessmentItem.ContentGroup">
<xsd:sequence>

<xsd

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

:element
element
element
element
element
element
element
element

</xsd:sequence>

</xsd:group>

ref="responseDeclaration” minOccurs="0" maxOccurs="unb
ref="outcomeDeclaration” minOccurs="0" maxOccurs="unbo
ref="templateDeclaration” minOccurs="0" maxOccurs="unb
ref="templateProcessing" minOccurs="0" maxOccurs="1"/>
ref="stylesheet" minOccurs="0" maxOccurs="unbounded" />
ref="itemBody" minOccurs="0" maxOccurs="1"/>

ref="responseProcessing" minOccurs="0" maxOccurs="1"/>
ref="modalFeedback" minOccurs="0" maxOccurs="unbounded|

ounded" />
unded" />
ounded" />

ll/>

SortDeclarations ()
Sort each of the variable declaration lists so that they are in identifier order. This is not essential but it does
help ensure that output is predictable. This method is called automatically when reading items from XML

files.

42

Chapter 3. IMS Global Learning Consortium Specifications

http://www.imsglobal.org/question/index.html
http://en.wikipedia.org/wiki/QTI

Pyslet Documentation, Release 0.6.20160201

RenderHTML (itemState, htmlParent=None)

Renders this item in html, adding nodes to htmlParent. The state of the item (e.g., the values of any controls
and template variables), is taken from itemState, a variables.ItemSessionState instance.

The result is the top-level div containing the item added to the htmlParent. If htmlParent is None then a

parentless div is created. If the item has no itemBody then an empty Div is returned.

AddToContentPackage (cp, lom, dName=None)
Adds a resource and associated files to the content package.

3.3.2 Tests

class pyslet.qgtiv2.tests.AssessmentTest (parent)

Bases: pyslet.qtiv2.core.QTIElement,pyslet.gtiv2.core.DeclarationContainer

A test is a group of assessmentltems with an associated set of rules that determine which of the items the
candidate sees, in what order, and in what way the candidate interacts with them. The rules describe the valid
paths through the test, when responses are submitted for response processing and when (if at all) feedback is to

be given:

<xsd:attributeGroup name="assessmentTest.AttrGroup">
<xsd:attribute name="identifier" type="string.Type" use="required"/>
<xsd:attribute name="title" type="string.Type" use="required"/>

<xsd:attribute name="toolName" type="string256.Type" use="optional"/>
<xsd:attribute name="toolVersion" type="string256.Type" use="optional"/>

</xsd:attributeGroup>

<xsd:group name="assessmentTest.ContentGroup">

<xsd:sequence>
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
</xsd:sequence>
</xsd:group>

ref="outcomeDeclaration" minOccurs="0" maxOccurs="unbo|

ref="timeLimits" minOccurs="0" maxOccurs="1"/>

ref="testPart" minOccurs="1" maxOccurs="unbounded"/>
ref="outcomeProcessing" minOccurs="0" maxOccurs="1"/>

ref="testFeedback" minOccurs="0" maxOccurs="unbounded"

unded" />

SortDeclarations ()

Sort the outcome declarations so that they are in identifier order. This is not essential but it does help

ensure that output is predictable. This method is called automatically when reading items from XML files.

RegisterPart (part)

Registers a testPart, asssessmentSection or assessmentltemRef in parts.

GetPart (identifier)

Returns the testPart, assessmentSection or assessmentltemRef with the given identifier.

Navigation and Submission

class pyslet.qtiv2.tests.NavigationMode
Bases: pyslet.xsdatatypes20041028.Enumeration

The navigation mode determines the general paths that the candidate may take. A testPart in linear mode restricts

the candidate to attempt each item in turn. Once the candidate moves on they are not permitted to return. A
testPart in nonlinear mode removes this restriction - the candidate is free to navigate to any item in the test at

any time:

3.3. IMS Question and Test Interoperability (version 2.1)

43

Pyslet Documentation, Release 0.6.20160201

<xsd:simpleType name="navigationMode.Type">
<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="linear"/>
<xsd:enumeration value="nonlinear"/>
</xsd:restriction>
</xsd:simpleType>

Defines constants for the above modes. Usage example:

NavigationMode.linear ‘

Note that:

NavigationMode .DEFAULT == None

For more methods see Enumeration

class pyslet.qgtiv2.tests.SubmissionMode
Bases: pyslet.xsdatatypes20041028.Enumeration

The submission mode determines when the candidate’s responses are submitted for response processing. A
testPart in individual mode requires the candidate to submit their responses on an item-by-item basis. In simul-
taneous mode the candidate’s responses are all submitted together at the end of the testPart:

<xsd:simpleType name="submissionMode.Type">
<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="individual"/>
<xsd:enumeration value="simultaneous"/>
</xsd:restriction>
</xsd:simpleType>

Defines constants for the above modes. Usage example:

SubmissionMode.individual ‘

Note that:

SubmissionMode.DEFAULT == None |

For more methods see Enumeration

class pyslet.qgtiv2.tests.TestPart (parent)
Bases: pyslet.qgtiv2.core.QTIElement

Each test is divided into one or more parts which may in turn be divided into sections, sub-sections, and so on:

<xsd:attributeGroup name="testPart.AttrGroup">
<xsd:attribute name="identifier" type="identifier.Type" use="required"/>
<xsd:attribute name="navigationMode" type="navigationMode.Type" use="required"/>
<xsd:attribute name="submissionMode" type="submissionMode.Type" use="required"/>
</xsd:attributeGroup>

<xsd:group name="testPart.ContentGroup">
<xsd:sequence>
<xsd:element ref="preCondition" minOccurs="0" maxOccurs="unbounded"|/>
<xsd:element ref="branchRule" minOccurs="0" maxOccurs="unbounded"/>|
<xsd:element ref="itemSessionControl" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="timeLimits" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="assessmentSection" minOccurs="1" maxOccurs="unbounded"/>
<xsd:element ref="testFeedback" minOccurs="0" maxOccurs="unbounded"|/>
</xsd:sequence>
</xsd:group>

44 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

CheckPreConditions (state)
Returns True if this testPart’s pre-conditions are satisfied or if there are no pre-conditions in effect.

GetBranchTarget (sfate)
Returns the identifier of the testPart to branch to, or the pre-defined EXIT_TEST identifier. If there is no
branch rule in effect then None is returned. state isavariables.TestSessionState instance used
to evaluate the branch rule expressions.

Test Structure

class pyslet.gtiv2.tests.Selection (parent)

Bases: pyslet.qgtiv2.core.QTIElement

The selection class specifies the rules used to select the child elements of a section for each test session:

<xsd:attributeGroup name="selection.AttrGroup">
<xsd:attribute name="select" type="integer.Type" use="required"/>
<xsd:attribute name="withReplacement" type="boolean.Type" use="optional"/>
<xsd:anyAttribute namespace="##other"/>

</xsd:attributeGroup>

<xsd:group name="selection.ContentGroup">
<xsd:sequence>
<xsd:any namespace="##any" minOccurs="0" maxOccurs="unbounded" processConte
</xsd:sequence>

</xsd:group>

nts="skip"/>

class pyslet.qgtiv2.tests.Ordering (parent)

Bases: pyslet.qtiv2.core.QTIElement

The ordering class specifies the rule used to arrange the child elements of a section following selection. If no
ordering rule is given we assume that the elements are to be ordered in the order in which they are defined:

<xsd:attributeGroup name="ordering.AttrGroup">
<xsd:attribute name="shuffle" type="boolean.Type" use="required"/>
<xsd:anyAttribute namespace="##other"/>

</xsd:attributeGroup>

<xsd:group name="ordering.ContentGroup">
<xsd:sequence>
<xsd:any namespace="##any" minOccurs="0" maxOccurs="unbounded" processConte
</xsd:sequence>

</xsd:group>

class pyslet.gtiv2.tests.SectionPart (parent)

Bases: pyslet.qtiv2.core.QTIElement

Sections group together individual item references and/or sub-sections. A number of common parameters are
shared by both types of child element:

<xsd:attributeGroup name="sectionPart.AttrGroup">
<xsd:attribute name="identifier" type="identifier.Type" use="required"/>
<xsd:attribute name="required" type="boolean.Type" use="optional"/>
<xsd:attribute name="fixed" type="boolean.Type" use="optional"/>
</xsd:attributeGroup>

<xsd:group name="sectionPart.ContentGroup">

3.3. IMS Question and Test Interoperability (version 2.1) 45

nts="skip"/>

Pyslet Documentation, Release 0.6.20160201

<xsd:sequence>
<xsd:element ref="preCondition" minOccurs="0" maxOccurs="unbounded"
<xsd:element ref="branchRule" minOccurs="0" maxOccurs="unbounded"/>|
<xsd:element ref="itemSessionControl" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="timeLimits" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
</xsd:group>

CheckPreConditions (sfate)
Returns True if this item or section’s pre-conditions are satisfied or if there are no pre-conditions in effect.

GetBranchTarget (sfate)
Returns the identifier of the next item or section to branch to, or one of the pre-defined EXIT_* identifiers.
If there is no branch rule in effect then None is returned. state is a variables.TestSessionState
instance used to evaluate the branch rule expressions.

class pyslet.qtiv2.tests.AssessmentSection (parent)
Bases: pyslet.qgtiv2.tests.SectionPart

Represents assessmentSection element

<xsd:attributeGroup name="assessmentSection.AttrGroup">
<xsd:attributeGroup ref="sectionPart.AttrGroup"/>
<xsd:attribute name="title" type="string.Type" use="required"/>
<xsd:attribute name="visible" type="boolean.Type" use="required"/>
<xsd:attribute name="keepTogether" type="boolean.Type" use="optional"/>
</xsd:attributeGroup>

<xsd:group name="assessmentSection.ContentGroup">

<xsd:sequence>
<xsd:group ref="sectionPart.ContentGroup"/>
<xsd:element ref="selection" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="ordering" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="rubricBlock" minOccurs="0" maxOccurs="unbounded"/
<xsd:group ref="sectionPart.ElementGroup" minOccurs="0" maxOccurs="

</xsd:sequence>

</xsd:group>

>
unbounded" />

class pyslet.gtiv2.tests.AssessmentItemRef (parent)
Bases: pyslet.qtiv2.tests.SectionPart

Items are incorporated into the test by reference and not by direct aggregation:

<xsd:attributeGroup name="assessmentItemRef.AttrGroup">
<xsd:attributeGroup ref="sectionPart.AttrGroup"/>
<xsd:attribute name="href" type="uri.Type" use="required"/>
<xsd:attribute name="category" use="optional">
<xsd:simpleType>
<xsd:1list itemType="identifier.Type"/>
</xsd:simpleType>
</xsd:attribute>
</xsd:attributeGroup>

<xsd:group name="assessmentItemRef.ContentGroup">
<xsd:sequence>
<xsd:group ref="sectionPart.ContentGroup"/>
<xsd:element ref="variableMapping" minOccurs="0" maxOccurs="unbound
<xsd:element ref="weight" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="templateDefault" minOccurs="0" maxOccurs="unbound

46 Chapter 3. IMS Global Learning Consortium Specifications

ed" />

ed"/>

Pyslet Documentation, Release 0.6.20160201

</xsd:sequence>
</xsd:group>

GetItem()
Returns the Assessmentltem referred to by this reference.

3.3.3 Content Model

class pyslet.gtiv2.content . ItemBody (parent)
Bases: pyslet.qtiv2.content.BodyElement

The item body contains the text, graphics, media objects, and interactions that describe the item’s content and
information about how it is structured:

<xsd:attributeGroup name="itemBody.AttrGroup">
<xsd:attributeGroup ref="bodyElement.AttrGroup"/>
</xsd:attributeGroup>

<xsd:group name="itemBody.ContentGroup">
<xsd:sequence>
<xsd:group ref="block.ElementGroup" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:group>

RenderHTML (parent, profile, itemState)
Overrides BodyElement . RenderHTML (), the result is always a Div with class set to “itemBody”.
Unlike other such method parent may by None, in which case a new parentless Div is created.

class pyslet.gtiv2.content .BodyElement (parent)
Bases: pyslet.qgtiv2.core.QTIElement

The root class of all content objects in the item content model is the bodyElement. It defines a number of
attributes that are common to all elements of the content model:

<xsd:attributeGroup name="bodyElement.AttrGroup">
<xsd:attribute name="id" type="identifier.Type" use="optional"/>
<xsd:attribute name="class" use="optional">
<xsd:simpleType>
<xsd:list itemType="styleclass.Type"/>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute ref="xml:lang"/>
<xsd:attribute name="label" type="string256.Type" use="optional"/>
</xsd:attributeGroup>

RenderHTML (parent, profile, itemState)
Renders this element in html form, adding nodes to parent. This method effectively overrides
html40_19991224.XHTMLElement .RenderHTML enabling QTI and XHTML elements to be
mixed freely.

The state of the item (e.g., the values of any controls), is taken from ifemState, a
variables.ItemSessionState instance.

RenderHTMLChildren (parent, profile, itemState)
Renders this element’s children to an external document represented by the parent node

3.3. IMS Question and Test Interoperability (version 2.1) 47

Pyslet Documentation, Release 0.6.20160201

Basic Classes

Many of the basic classes are drawn directly from the htm140_19991224 module, as a result there are slight
modifications to some of the abstract base class definitions. See InlineMixin, BlockMixin and FlowMixin;
there is no class corresponding to the objectFlow concept (see Object for more information). There is also no
representation of the static base classes used to exclude interactions or any of the other basic container classes, these
are all handled directly by their equivalent html abstractions.

class pyslet.qtiv2.content .FlowContainerMixin
Mixin class used for objects that can contain flows.

PrettyPrint ()
Deteremins if this flow-container-like object should be pretty printed.

This is similar to the algorithm we use in HTML flow containers, suppressing pretty printing if we have
inline elements (ignoring non-trivial data). This could be refactored in future.

XHMTL Elements

Again, these classes are defined in the accompanying htm140_19991224 module, however we do define some
profiles here to make it easier to constraint general HTML content to the profile defined here.

pyslet.gtiv2.content.TextElements = {‘em’: (‘id’, ‘class’, ‘label’), ‘pre’: (‘id’, ‘class’, ‘label’), ‘code’: (‘id’, ‘class’, ‘I
Basic text formatting elements

pyslet.gtiv2.content.ListElements = {‘dI’: (‘id’, ‘class’, ‘label’), ‘ol’: (‘id’, ‘class’, ‘label’), ‘dd’: (‘id’, ‘class’, ‘label’
Elements required for lists

pyslet.gtiv2.content.ObjectElements = {‘object’: (‘id’, ‘class’, ‘label’, ‘data’, ‘type’, ‘width’, ‘height’), ‘param’: (‘i
The object element

pyslet.gtiv2.content.PresentationElements = {‘caption’: (‘id’, ‘class’, ‘label’), ‘tfoot’: (‘id’, ‘class’, ‘label’), ‘th’:
Tables

pyslet.gtiv2.content.ImageElement = {‘img’: (‘id’, ‘class’, ‘label’, ‘src’, ‘alt’, ‘longdesc’, ‘height’, ‘width’)}
Images

pyslet.gtiv2.content.HypertextElement = {‘a’: (‘id’, ‘class’, ‘label’, ‘href’, ‘type’)}
Hyperlinks

pyslet.gtiv2.content.HTMLProfile = {‘em’: (‘id’, ‘class’, ‘label’), ‘pre’: (‘id’, ‘class’, ‘label’), ‘code’: (‘id’, ‘class’, ‘lal
The full HTML profile defined by QTI

3.3.4 Interactions
class pyslet.gtiv2.interactions.Interaction (parent)
Bases: pyslet.qtiv2.content.BodyElement

Interactions allow the candidate to interact with the item. Through an interaction, the candidate selects or
constructs a response:

<xsd:attributeGroup name="interaction.AttrGroup">
<xsd:attributeGroup ref="bodyElement.AttrGroup"/>
<xsd:attribute name="responseldentifier" type="identifier.Type" use="required"/>

</xsd:attributeGroup>

class pyslet.qgtiv2.interactions.InlineInteraction (parent)
Bases: pyslet.html140_19991224.InlineMixin, pyslet.qtiv2.interactions.Interaction

48 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

Abstract class for interactions that appear inline.

class pyslet.gtiv2.interactions.BlockInteraction (parent)
Bases: pyslet .html140_19991224.BlockMixin, pyslet.qgtiv2.interactions.Interaction

An interaction that behaves like a block in the content model. Most interactions are of this type:

<xsd:group name="blockInteraction.ContentGroup">
<xsd:sequence>
<xsd:element ref="prompt" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
</xsd:group>

class pyslet.gtiv2.interactions.Prompt (parent)
Bases: pyslet.qtiv2.content.BodyElement

The prompt used in block interactions

<xsd:group name="prompt.ContentGroup">
<xsd:sequence>
<xsd:group ref="inlineStatic.ElementGroup" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:group>

class pyslet.gtiv2.interactions.Choice (parent)
Bases: pyslet.qtiv2.content.BodyElement

Many of the interactions involve choosing one or more predefined choices

<xsd:attributeGroup name="choice.AttrGroup">
<xsd:attributeGroup ref="bodyElement.AttrGroup"/>
<xsd:attribute name="identifier" type="identifier.Type" use="required"/>
<xsd:attribute name="fixed" type="boolean.Type" use="optional"/>
<xsd:attribute name="templateIdentifier" type="identifier.Type" use="optional"/>
<xsd:attribute name="showHide" type="showHide.Type" use="optional"/>
</xsd:attributeGroup>

class pyslet.gtiv2.interactions.AssociableChoice (parent)
Bases: pyslet.qgtiv2.interactions.Choice

Other interactions involve associating pairs of predefined choices

<xsd:attributeGroup name="associableChoice.AttrGroup">
<xsd:attributeGroup ref="choice.AttrGroup"/>
<xsd:attribute name="matchGroup" use="optional">
<xsd:simpleType>
<xsd:list itemType="identifier.Type"/>
</xsd:simpleType>
</xsd:attribute>
</xsd:attributeGroup>

Simple Interactions
class pyslet.qgtiv2.interactions.ChoiceInteraction (parent)
Bases: pyslet.qtiv2.interactions.BlockInteraction

The choice interaction presents a set of choices to the candidate. The candidate’s task is to select one or more
of the choices, up to a maximum of maxChoices:

3.3. IMS Question and Test Interoperability (version 2.1) 49

Pyslet Documentation, Release 0.6.20160201

<xsd:attributeGroup name="choicelInteraction.AttrGroup">
<xsd:attributeGroup ref="blockInteraction.AttrGroup"/>
<xsd:attribute name="shuffle" type="boolean.Type" use="required"/>
<xsd:attribute name="maxChoices" type="integer.Type" use="required"/>
<xsd:attribute name="minChoices" type="integer.Type" use="optional"/>
</xsd:attributeGroup>

<xsd:group name="choiceInteraction.ContentGroup">
<xsd:sequence>
<xsd:group ref="blockInteraction.ContentGroup"/>
<xsd:element ref="simpleChoice" minOccurs="1" maxOccurs="unbounded"
</xsd:sequence>
</xsd:group>

class pyslet.gtiv2.interactions.OrderInteraction (parent)
Bases: pyslet.qgtiv2.interactions.BlockInteraction

In an order interaction the candidate’s task is to reorder the choices, the order in which the choices are displayed
initially is significant:

<xsd:attributeGroup name="orderInteraction.AttrGroup">
<xsd:attributeGroup ref="blockInteraction.AttrGroup"/>
<xsd:attribute name="shuffle" type="boolean.Type" use="required"/>
<xsd:attribute name="minChoices" type="integer.Type" use="optional"/>
<xsd:attribute name="maxChoices" type="integer.Type" use="optional"/>
<xsd:attribute name="orientation" type="orientation.Type" use="optional"/>
</xsd:attributeGroup>

<xsd:group name="orderInteraction.ContentGroup">
<xsd:sequence>
<xsd:group ref="blockInteraction.ContentGroup"/>
<xsd:element ref="simpleChoice" minOccurs="1" maxOccurs="unbounded"
</xsd:sequence>

</xsd:group>

class pyslet.gtiv2.interactions.SimpleChoice (parent)
Bases: pyslet.qtiv2.content.FlowContainerMixin,pyslet.qtiv2.interactions.Choi

A SimpleChoice is a choice that contains flow objects; it must not contain any nested interactions:

ce

<xsd:group name="simpleChoice.ContentGroup">
<xsd:sequence>
<xsd:group ref="flowStatic.ElementGroup" minOccurs="0" maxOccurs="u
</xsd:sequence>

</xsd:group>

nbounded" />

class pyslet.gtiv2.interactions.AssociateInteraction (parent)
Bases: pyslet.qtiv2.interactions.BlockInteraction

An associate interaction is a blockInteraction that presents candidates with a number of choices and allows them
to create associations between them:

<xsd:attributeGroup name="associatelInteraction.AttrGroup">
<xsd:attributeGroup ref="blockInteraction.AttrGroup"/>
<xsd:attribute name="shuffle" type="boolean.Type" use="required"/>
<xsd:attribute name="maxAssociations" type="integer.Type" use="required"/>
<xsd:attribute name="minAssociations" type="integer.Type" use="optional"/>
</xsd:attributeGroup>

<xsd:group name="associateInteraction.ContentGroup">

50 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

<xsd:sequence>
<xsd:group ref="blockInteraction.ContentGroup"/>
<xsd:element ref="simpleAssociableChoice" minOccurs="1" maxOccurs="junbounded"/>
</xsd:sequence>
</xsd:group>

class pyslet.qtiv2.interactions.MatchInteraction (parent)
Bases: pyslet.qtiv2.interactions.BlockInteraction

A match interaction is a blockInteraction that presents candidates with two sets of choices and allows them to
create associates between pairs of choices in the two sets, but not between pairs of choices in the same set:

<xsd:attributeGroup name="matchInteraction.AttrGroup">
<xsd:attributeGroup ref="blockInteraction.AttrGroup"/>
<xsd:attribute name="shuffle" type="boolean.Type" use="required"/>
<xsd:attribute name="maxAssociations" type="integer.Type" use="required"/>
<xsd:attribute name="minAssociations" type="integer.Type" use="optional"/>
</xsd:attributeGroup>

<xsd:group name="matchInteraction.ContentGroup">
<xsd:sequence>
<xsd:group ref="blockInteraction.ContentGroup"/>
<xsd:element ref="simpleMatchSet" minOccurs="2" maxOccurs="2"/>
</xsd:sequence>
</xsd:group>

class pyslet.gtiv2.interactions.SimpleAssociableChoice (parent)
Bases: pyslet.qgtiv2.content.FlowContainerMixin,pyslet.qgtiv2.interactions.AssociableChoice

associableChoice is a choice that contains flowStatic objects, it must not contain nested interactions:

<xsd:attributeGroup name="simpleAssociableChoice.AttrGroup">
<xsd:attributeGroup ref="associableChoice.AttrGroup"/>
<xsd:attribute name="matchMax" type="integer.Type" use="required"/>
<xsd:attribute name="matchMin" type="integer.Type" use="optional"/>
</xsd:attributeGroup>

<xsd:group name="simpleAssociableChoice.ContentGroup">
<xsd:sequence>
<xsd:group ref="flowStatic.ElementGroup" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:group>

class pyslet.gtiv2.interactions.SimpleMatchSet (parent)
Bases: pyslet.qgtiv2.core.QTIElement

Contains an ordered set of choices for the set

<xsd:group name="simpleMatchSet.ContentGroup">
<xsd:sequence>
<xsd:element ref="simpleAssociableChoice" minOccurs="0" maxOccurs="junbounded"/>
</xsd:sequence>
</xsd:group>

class pyslet.gtiv2.interactions.GapMatchInteraction (parent)
Bases: pyslet.qtiv2.interactions.BlockInteraction

A gap match interaction is a blockInteraction that contains a number gaps that the candidate can fill from an
associated set of choices:

3.3. IMS Question and Test Interoperability (version 2.1) 51

Pyslet Documentation, Release 0.6.20160201

<xsd:attributeGroup name="gapMatchInteraction.AttrGroup">
<xsd:attributeGroup ref="blockInteraction.AttrGroup"/>
<xsd:attribute name="shuffle" type="boolean.Type" use="required"/>
</xsd:attributeGroup>

<xsd:group name="gapMatchInteraction.ContentGroup">
<xsd:sequence>
<xsd:group ref="blockInteraction.ContentGroup"/>
<xsd:group ref="gapChoice.ElementGroup" minOccurs="1" maxOccurs="unbounded"/>
<xsd:group ref="blockStatic.ElementGroup" minOccurs="1" maxOccurs="junbounded" />
</xsd:sequence>
</xsd:group>

class pyslet.gtiv2.interactions.Gap (parent)
Bases: pyslet.html140_19991224.InlineMixin, pyslet.qtiv2.interactions.AssociableChoice

A gap is an inline element that must only appear within a gapMatchInteraction

<xsd:attributeGroup name="gap.AttrGroup">
<xsd:attributeGroup ref="associableChoice.AttrGroup"/>
<xsd:attribute name="required" type="boolean.Type" use="optional"/>
</xsd:attributeGroup>

class pyslet.gtiv2.interactions.GapChoice (parent)
Bases: pyslet.qgtiv2.interactions.AssociableChoice

The choices that are used to fill the gaps in a gapMatchInteraction are either simple runs of text or single image
objects, both derived from gapChoice:

<xsd:attributeGroup name="gapChoice.AttrGroup">
<xsd:attributeGroup ref="associableChoice.AttrGroup"/>
<xsd:attribute name="matchMax" type="integer.Type" use="required"/>
<xsd:attribute name="matchMin" type="integer.Type" use="optional"/>
</xsd:attributeGroup>

class pyslet.qtiv2.interactions.GapText (parent)
Bases: pyslet.qgtiv2.interactions.GapChoice

A simple run of text to be inserted into a gap by the user, may be subject to variable value substitution with
printed Variable:

<xsd:group name="gapText.ContentGroup">
<xsd:sequence>
<xsd:element ref="printedVariable" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:group>

class pyslet.qgtiv2.interactions.GapImg (parent)
Bases: pyslet.qgtiv2.interactions.GapChoice

A gap image contains a single image object to be inserted into a gap by the candidate:

<xsd:attributeGroup name="gapImg.AttrGroup">

<xsd:attributeGroup ref="gapChoice.AttrGroup"/>

<xsd:attribute name="objectLabel" type="string.Type" use="optional"/>
</xsd:attributeGroup>

<xsd:group name="gapImg.ContentGroup">
<xsd:sequence>
<xsd:element ref="object" minOccurs="1" maxOccurs="1"/>

52 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

</xsd:sequence>

</xsd:group>

Text-based Interactions
class pyslet.gtiv2.interactions.InlineChoiceInteraction (parent)
Bases: pyslet.qtiv2.interactions.InlinelInteraction

An inline choice is an inlinelnteraction that presents the user with a set of choices, each of which is a simple
piece of text:

<xsd:attributeGroup name="inlineChoiceInteraction.AttrGroup">
<xsd:attributeGroup ref="inlinelInteraction.AttrGroup"/>
<xsd:attribute name="shuffle" type="boolean.Type" use="required"/>
<xsd:attribute name="required" type="boolean.Type" use="optional"/>
</xsd:attributeGroup>

<xsd:group name="inlineChoiceInteraction.ContentGroup">
<xsd:sequence>
<xsd:element ref="inlineChoice" minOccurs="1" maxOccurs="unbounded"
</xsd:sequence>

</xsd:group>

class pyslet.gtiv2.interactions.InlineChoice (parent)
Bases: pyslet.qtiv2.interactions.Choice

A simple run of text to be displayed to the user, may be subject to variable value substitution with printed Vari-
able:

<xsd:group name="inlineChoice.ContentGroup">
<xsd:sequence>
<xsd:element ref="printedVariable" minOccurs="0" maxOccurs="unbound
</xsd:sequence>
</xsd:group>

class pyslet.gtiv2.interactions.StringInteractionMixin
Abstract mix-in class for interactions based on free-text input. String interactions can be bound to numeric
response variables, instead of strings, if desired:

<xsd:attributeGroup name="stringInteraction.AttrGroup">
<xsd:attribute name="base" type="integer.Type" use="optional"/>
<xsd:attribute name="stringIdentifier" type="identifier.Type" use="optional|
<xsd:attribute name="expectedLength" type="integer.Type" use="optional"/>
<xsd:attribute name="patternMask" type="string.Type" use="optional"/>
<xsd:attribute name="placeholderText" type="string.Type" use="optional"/>
</xsd:attributeGroup>

class pyslet.qtiv2.interactions.TextEntryInteraction (parent)
Bases: pyslet.qtiv2.interactions.StringlInteractionMixin,
pyslet.qtiv2.interactions.InlineInteraction

A textEntry interaction is an inlineInteraction that obtains a simple piece of text from the candidate.

class pyslet.qtiv2.interactions.TextFormat
Bases: pyslet.xsdatatypes20041028.Enumeration

Used to control the format of the text entered by the candidate:

3.3. IMS Question and Test Interoperability (version 2.1) 53

/>

ed" />

ll/>

Pyslet Documentation, Release 0.6.20160201

<xsd:simpleType name="textFormat.Type">
<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="plain"/>
<xsd:enumeration value="preFormatted"/>
<xsd:enumeration value="xhtml"/>
</xsd:restriction>
</xsd:simpleType>

Defines constants for the above formats. Usage example:

TextFormat.plain

Note that:

TextFormat .DEFAULT == TextFormat.plain

For more methods see Enumeration

class pyslet.gtiv2.interactions.ExtendedTextInteraction (parent)

Bases: pyslet.qtiv2.interactions.StringInteractionMixin,
pyslet.qtiv2.interactions.BlockInteraction

An extended text interaction is a blockInteraction that allows the candidate to enter an extended amount of text:

<xsd:attributeGroup name="extendedTextInteraction.AttrGroup">
<xsd:attributeGroup ref="blockInteraction.AttrGroup"/>
<xsd:attributeGroup ref="stringInteraction.AttrGroup"/>
<xsd:attribute name="maxStrings" type="integer.Type" use="optional"/>
<xsd:attribute name="minStrings" type="integer.Type" use="optional"/>
<xsd:attribute name="expectedLines" type="integer.Type" use="optional"/>
<xsd:attribute name="format" type="textFormat.Type" use="optional"/>

</xsd:attributeGroup>

class pyslet.qtiv2.interactions.HottextInteraction (parent)

Bases: pyslet.qtiv2.interactions.BlockInteraction

The hottext interaction presents a set of choices to the candidate represented as selectable runs of text embedded
within a surrounding context, such as a simple passage of text:

<xsd:attributeGroup name="hottextInteraction.AttrGroup">
<xsd:attributeGroup ref="blockInteraction.AttrGroup"/>
<xsd:attribute name="maxChoices" type="integer.Type" use="required"/>
<xsd:attribute name="minChoices" type="integer.Type" use="optional"/>
</xsd:attributeGroup>

<xsd:group name="hottextInteraction.ContentGroup">
<xsd:sequence>
<xsd:group ref="blockInteraction.ContentGroup"/>
<xsd:group ref="blockStatic.ElementGroup" minOccurs="1" maxOccurs="
</xsd:sequence>
</xsd:group>

unbounded" />

class pyslet.gtiv2.interactions.Hottext (parent)

Bases: pyslet.html140_19991224.FlowMixin, pyslet.qtiv2.interactions.Choice

A hottext area is used within the content of an hottextInteraction to provide the individual choices:

<xsd:group name="hottext.ContentGroup">
<xsd:sequence>

<xsd:group ref="inlineStatic.ElementGroup" minOccurs="0" maxOccurs=

54

Chapter 3. IMS Global Learning Consortium Specifications

"unbounded" />

Pyslet Documentation, Release 0.6.20160201

</xsd:sequence>
</xsd:group>

Graphical Interactions

class pyslet.gtiv2.interactions.GapImg (parent)
Bases: pyslet.gtiv2.interactions.GapChoice

A gap image contains a single image object to be inserted into a gap by the candidate:

<xsd:attributeGroup name="gapImg.AttrGroup">

<xsd:attributeGroup ref="gapChoice.AttrGroup"/>

<xsd:attribute name="objectLabel" type="string.Type" use="optional"/>
</xsd:attributeGroup>

<xsd:group name="gapImg.ContentGroup">
<xsd:sequence>
<xsd:element ref="object" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:group>

class pyslet.gtiv2.interactions.GapImg (parent)
Bases: pyslet.qgtiv2.interactions.GapChoice

A gap image contains a single image object to be inserted into a gap by the candidate:

<xsd:attributeGroup name="gapImg.AttrGroup">

<xsd:attributeGroup ref="gapChoice.AttrGroup"/>

<xsd:attribute name="objectLabel" type="string.Type" use="optional"/>
</xsd:attributeGroup>

<xsd:group name="gapImg.ContentGroup">
<xsd:sequence>
<xsd:element ref="object" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:group>

class pyslet.gtiv2.interactions.GapImg (parent)
Bases: pyslet.gtiv2.interactions.GapChoice

A gap image contains a single image object to be inserted into a gap by the candidate:

<xsd:attributeGroup name="gapImg.AttrGroup">

<xsd:attributeGroup ref="gapChoice.AttrGroup"/>

<xsd:attribute name="objectLabel" type="string.Type" use="optional"/>
</xsd:attributeGroup>

<xsd:group name="gapImg.ContentGroup">
<xsd:sequence>
<xsd:element ref="object" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:group>

3.3.5 ltem Variables

This module contains the basic run-time data model. Although the specification does contain elements to represent the
values of variables set at runtime the XML schema sometimes relies too much on context for an efficient implementa-

3.3. IMS Question and Test Interoperability (version 2.1) 55

Pyslet Documentation, Release 0.6.20160201

tion. For example, a <value> element is always a value of a specific base type but the base type is rarely specified on
the value element itself as it is normally implicit in the context. such as a variable declaration.

Although the expression model does contain an element that provides a more complete representation of single val-
ues (namely <baseValue>) we decide to make the distinction in this module with ValueElement representing the
element and the abstract Value being used as the root of the runtime object model.

For example, to get the default value of a variable from a variable declaration you’ll use the GetDefaultValue ()
method and it will return a Va1 ue instance which could be of any cardinality or base type.

class pyslet.qtiv2.variables.VariableDeclaration (parent)

Bases: pyslet.qgtiv2.core.QTIElement

Item variables are declared by variable declarations... The purpose of the declaration is to associate an identifier
with the variable and to identify the runtime type of the variable’s value:

<xsd:attributeGroup name="variableDeclaration.AttrGroup">
<xsd:attribute name="identifier" type="identifier.Type" use="required"/>
<xsd:attribute name="cardinality" type="cardinality.Type" use="required"/>
<xsd:attribute name="baseType" type="baseType.Type" use="optional"/>
</xsd:attributeGroup>

<xsd:group name="variableDeclaration.ContentGroup">
<xsd:sequence>
<xsd:element ref="defaultValue" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
</xsd:group>

GetDefaultValue ()
Returns a Value instance representing either the default value or an appropriately typed NULL value if
there is no default defined.

class pyslet.gtiv2.variables.ValueElement (parent)

Bases: pyslet.qgtiv2.core.QTIElement

A class that can represent a single value of any baseType in variable declarations and result reports:

<xsd:attributeGroup name="value.AttrGroup">
<xsd:attribute name="fieldIdentifier" type="identifier.Type" use="optional"
<xsd:attribute name="baseType" type="baseType.Type" use="optional"/>
</xsd:attributeGroup>

class pyslet.qtiv2.variables.DefaultValue (parent)

Bases: pyslet.qtiv2.variables.DefinedValue

An optional default value for a variable. The point at which a variable is set to its default value varies depending
on the type of item variable.

class pyslet.qtiv2.variables.Cardinality

Bases: pyslet.xsdatatypes20041028.Enumeration

An expression or itemVariable can either be single-valued or multi-valued. A multi-valued expression (or vari-
able) is called a container. A container contains a list of values, this list may be empty in which case it is treated
as NULL. All the values in a multiple or ordered container are drawn from the same value set:

<xsd:simpleType name="cardinality.Type">
<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="multiple"/>
<xsd:enumeration value="ordered"/>
<xsd:enumeration value="record"/>
<xsd:enumeration value="single"/>

56

Chapter 3. IMS Global Learning Consortium Specifications

/>

Pyslet Documentation, Release 0.6.20160201

</xsd:restriction>
</xsd:simpleType>

Defines constants for the above carinalities. Usage example:

Cardinality.multiple

There is no default:

Cardinality.DEFAULT == None

For more methods see Enumeration

class pyslet.gtiv2.variables.BaseType

Bases: pyslet.xsdatatypes20041028.Enumeration

A base-type is simply a description of a set of atomic values (atomic to this specification). Note that several of
the baseTypes used to define the runtime data model have identical definitions to those of the basic data types
used to define the values for attributes in the specification itself. The use of an enumeration to define the set of
baseTypes used in the runtime model, as opposed to the use of classes with similar names, is designed to help
distinguish between these two distinct levels of modelling:

<xsd:simpleType name="baseType.Type">
<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="boolean"/>
<xsd:enumeration value="directedPair"/>
<xsd:enumeration value="duration"/>
<xsd:enumeration value="file"/>
<xsd:enumeration value="float"/>
<xsd:enumeration value="identifier"/>
<xsd:enumeration value="integer"/>
<xsd:enumeration value="pair"/>
<xsd:enumeration value="point"/>
<xsd:enumeration value="string"/>
<xsd:enumeration value="uri"/>
</xsd:restriction>
</xsd:simpleType>

Defines constants for the above base types. Usage example:

BaseType.float

There is no default:

BaseType.DEFAULT == None

For more methods see Enumeration

class pyslet.qgtiv2.variables.Mapping (parent)

Bases: pyslet.qgtiv2.core.QTIElement

A special class used to create a mapping from a source set of any baseType (except file and duration) to a single
float:

<xsd:attributeGroup name="mapping.AttrGroup">
<xsd:attribute name="lowerBound" type="float.Type" use="optional"/>
<xsd:attribute name="upperBound" type="float.Type" use="optional"/>
<xsd:attribute name="defaultValue" type="float.Type" use="required"/>
</xsd:attributeGroup>

<xsd:group name="mapping.ContentGroup">

3.3. IMS Question and Test Interoperability (version 2.1) 57

Pyslet Documentation, Release 0.6.20160201

<xsd:sequence>
<xsd:element ref="mapEntry" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:group>

content_changed ()
Builds an internal dictionary of the values being mapped.

In order to fully specify the mapping we need to know the baseType of the source values. (The targets are
always floats.) We do this based on our parent, orphan Mapping elements are treated as mappings from
source strings.

MapValue (value)
Maps an instance of Value with the same base type as the mapping to an instance of Value with base
type float.

class pyslet.qgtiv2.variables.MapEntry (parent)
Bases: pyslet.qtiv2.core.QTIElement

An entry in a Mapping

<xsd:attributeGroup name="mapEntry.AttrGroup">
<xsd:attribute name="mapKey" type="valueType.Type" use="required"/>
<xsd:attribute name="mappedvValue" type="float.Type" use="required"/>
</xsd:attributeGroup>

mapKey = None
The source value

mappedValue = None
The mapped value

Response Variables

class pyslet.gtiv2.variables.ResponseDeclaration (parent)
Bases: pyslet.qtiv2.variables.VariableDeclaration

Response variables are declared by response declarations and bound to interactions in the itemBody:

<xsd:group name="responseDeclaration.ContentGroup">
<xsd:sequence>
<xsd:group ref="variableDeclaration.ContentGroup"/>
<xsd:element ref="correctResponse" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="mapping" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="areaMapping" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
</xsd:group>

GetCorrectValue ()
Returns a Va lue instance representing either the correct response value or an appropriately typed NULL
value if there is no correct value.

GetStageDimensions ()
For response variables with point type, returns a pair of integer values: width,height

In HTML, shapes (including those used in the AreaMapping) can use relative coordinates. To interpret
relative coordinates we need to know the size of the stage used to interpret the point values. For a response
variable that is typically the size of the image or object used in the interaction.

58 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

This method searches for the interaction associated with the response and obtains the width and height of
the corresponding object.

[TODO: currently returns 100,100]

class pyslet.qtiv2.variables.CorrectResponse (parent)
Bases: pyslet.qgtiv2.variables.DefinedValue

A response declaration may assign an optional correctResponse. This value may indicate the only possible value
of the response variable to be considered correct or merely just a correct value.

class pyslet.qgtiv2.variables.AreaMapping (parent)
Bases: pyslet.qtiv2.core.QTIElement

A special class used to create a mapping from a source set of point values to a target set of float values:

<xsd:attributeGroup name="areaMapping.AttrGroup">
<xsd:attribute name="lowerBound" type="float.Type" use="optional"/>
<xsd:attribute name="upperBound" type="float.Type" use="optional"/>
<xsd:attribute name="defaultValue" type="float.Type" use="required"/>
</xsd:attributeGroup>

<xsd:group name="areaMapping.ContentGroup">
<xsd:sequence>
<xsd:element ref="areaMapEntry" minOccurs="1" maxOccurs="unbounded"
</xsd:sequence>
</xsd:group>

MapValue (value, width, height)
Maps an instance of Value with point base type to an instance of Value with base type float.

evalue is a Va lue of base type point
*width is the integer width of the object on which the area is defined
*height is the integer height of the object on which the area is defined

The width and height of the object are required because HTML allows relative values to be used when
defining areas.

class pyslet.qgtiv2.variables.AreaMapEntry (parent)
Bases: pyslet.qtiv2.core.QTIElement,pyslet.qtiv2.core.ShapeElementMixin

An AreaMapping is defined by a set of areaMapEntries, each of which maps an area of the coordinate space
onto a single float:

<xsd:attributeGroup name="areaMapEntry.AttrGroup">
<xsd:attribute name="shape" type="shape.Type" use="required"/>
<xsd:attribute name="coords" type="coords.Type" use="required"/>
<xsd:attribute name="mappedvValue" type="float.Type" use="required"/>
</xsd:attributeGroup>

mappedValue = None
The mapped value

Outcome Variables

class pyslet.gtiv2.variables.OutcomeDeclaration (parent)
Bases: pyslet.gtiv2.variables.VariableDeclaration

Outcome variables are declared by outcome declarations

3.3. IMS Question and Test Interoperability (version 2.1) 59

Pyslet Documentation, Release 0.6.20160201

<xsd:attributeGroup name="outcomeDeclaration.AttrGroup">
<xsd:attributeGroup ref="variableDeclaration.AttrGroup"/>
<xsd:attribute name="view" use="optional">
<xsd:simpleType>
<xsd:list itemType="view.Type"/>
</xsd:simpleType>
</xsd:attribute>

<xsd:attribute name="interpretation" type="string.Type" use="optional"/>
<xsd:attribute name="longInterpretation" type="uri.Type" use="optional"/>
<xsd:attribute name="normalMaximum" type="float.Type" use="optional"/>
<xsd:attribute name="normalMinimum" type="float.Type" use="optional"/>

<xsd:attribute name="masteryValue" type="float.Type" use="optional"/>

</xsd:attributeGroup>

<xsd:group name="outcomeDeclaration.ContentGroup">
<xsd:sequence>
<xsd:group ref="variableDeclaration.ContentGroup"/>

<xsd:group ref="lookupTable.ElementGroup" minOccurs="0" maxOccurs="

</xsd:sequence>
</xsd:group>

1i"/>

class pyslet.qtiv2.variables.LookupTable (parent)
Bases: pyslet.qtiv2.core.QTIElement

An abstract class associated with an outcomeDeclaration used to create a lookup table from a numeric source

value to a single outcome value in the declared value set:

<xsd:attributeGroup name="lookupTable.AttrGroup">

<xsd:attribute name="defaultValue" type="valueType.Type" use="

</xsd:attributeGroup>

optional"/>

default = None
a Value instance representing the default

class pyslet.gtiv2.variables.MatchTable (parent)
Bases: pyslet.qgtiv2.variables.LookupTable

A matchTable transforms a source integer by finding the first matchTableEntry with an exact match to the source:

<xsd:group name="matchTable.ContentGroup">
<xsd:sequence>

<xsd:element ref="matchTableEntry" minOccurs="1" maxOccurs="unbound

</xsd:sequence>
</xsd:group>

content_changed ()
Builds an internal dictionary of the values being mapped.

Lookup (value)

Maps an instance of Value with integer base type to an instance of Value with the base type of the

match table.

class pyslet.gtiv2.variables.MatchTableEntry (parent)
Bases: pyslet.qgtiv2.core.QTIElement

sourceValue The source integer that must be matched exactly.

targetValue The target value that is used to set the outcome when a match is found

<xsd:attributeGroup name="matchTableEntry.AttrGroup">

<xsd:attribute name="sourceValue" type="integer.Type" use="required"/>

60 Chapter 3. IMS Global Learning Consortium Specifications

ed" />

Pyslet Documentation, Release 0.6.20160201

<xsd:attribute name="targetValue" type="valueType.Type" use="required"/>

</xsd:attributeGroup>

class pyslet.qtiv2.variables.InterpolationTable (parent)
Bases: pyslet.qgtiv2.variables.LookupTable

An interpolationTable transforms a source float (or integer) by finding the first interpolationTableEntry with a
source Value that is less than or equal to (subject to includeBoundary) the source value:

<xsd:group name="interpolationTable.ContentGroup">
<xsd:sequence>
<xsd:element ref="interpolationTableEntry" minOccurs="1" maxOccurs=
</xsd:sequence>
</xsd:group>

content_changed()
Builds an internal table of the values being mapped.

Lookup (value)

Maps an instance of Value with integer or float base type to an instance of Value with the base type of
the interpolation table.

class pyslet.qtiv2.variables.InterpolationTableEntry (parent)
Bases: pyslet.qtiv2.core.QTIElement

sourceValue The lower bound for the source value to match this entry.

includeBoundary Determines if an exact match of sourceValue matches this entry. If true, the default, then an
exact match of the value is considered a match of this entry.

targetValue The target value that is used to set the outcome when a match is found

<xsd:attributeGroup name="interpolationTableEntry.AttrGroup">
<xsd:attribute name="sourceValue" type="float.Type" use="required"/>
<xsd:attribute name="includeBoundary" type="boolean.Type" use="optional"/>
<xsd:attribute name="targetValue" type="valueType.Type" use="required"/>
</xsd:attributeGroup>

Template Variables

class pyslet.qtiv2.variables.TemplateDeclaration (parent)
Bases: pyslet.qtiv2.variables.VariableDeclaration

Template declarations declare item variables that are to be used specifically for the purposes of cloning items

<xsd:attributeGroup name="templateDeclaration.AttrGroup">
<xsd:attributeGroup ref="variableDeclaration.AttrGroup"/>
<xsd:attribute name="paramVariable" type="boolean.Type" use="optional"/>
<xsd:attribute name="mathVariable" type="boolean.Type" use="optional"/>
</xsd:attributeGroup>

Runtime Object Model
class pyslet.gtiv2.variables.SessionState
Bases: object

Abstract class used as the base class for namespace-like objects used to track the state of an item or test session.
Instances can be used as if they were dictionaries of Value.

3.3. IMS Question and Test Interoperability (version 2.1) 61

"unbounded" />

Pyslet Documentation, Release 0.6.20160201

GetDeclaration (varName)
Returns the declaration associated with varName or None if the variable is one of the built-in variables. If
varName is not a variable KeyError is raised. To test for the existence of a variable just use the object as
you would a dictionary:

state is a SessionState instance
if 'RESPONSE' in state:
print "RESPONSE declared!"

IsResponse (varName)
Return True if varName is the name of a response variable.

IsOutcome (varName)
Return True if varName is the name of an outcome variable.

IsTemplate (varName)
Return True if varName is the name of a template variable.

__getitem__ (varName)
Returns the Value instance corresponding to varName or raises KeyError if there is no variable with that
name.

___setitem__ (varName, value)
Sets the value of varName to the Value instance value.

The baseType and cardinality of value must match those expected for the variable.

This method does not actually update the dictionary with the value instance but instead, it copies the value
of value into the Value instance already stored in the session. The side-effect of this implementation is
that a previous look-up will be updated by a subsequent assignment:

state is a SessionState instance

state['RESPONSE']=IdentifierValue ('Hello")

rl=state['RESPONSE']

state['RESPONSE']=IdentifierValue ('Bye')

r2=state['RESPONSE']

rl==r2 # WARNING: rl has been updated so still evaluates to True!

___weakref
list of weak references to the object (if defined)

class pyslet.gtiv2.variables.ItemSessionState (item)

Bases: pyslet.qgtiv2.variables.SessionState
Represents the state of an item session. ifem is the item from which the session should be created.

On construction, all declared variables (included built-in variables) are added to the session with NULL values,
except the template variables which are set to their defaults.

In addition to the variables defined by the specification we add meta variables corresponding to response and
outcome defaults, these have the same name as the variable but with ”. DEFAULT” appended. Similarly, we
define names for the correct values of response variables using ”.CORRECT”. The values of these meta-variables
are all initialised from the item definition on construction.

SelectClone ()
Item templates describe a range of possible items referred to as clones.

If the item used to create the session object is an item template then you must call SelectClone before
beginning the candidate’s session with BeginSession ().

The main purpose of this method is to run the template processing rules. These rules update the values of
the template variables and may also alter correct responses and default outcome (or response) values.

62

Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

BeginSession ()
Called at the start of an item session. According to the specification:

“The session starts when the associated item first becomes eligible for delivery to the candidate”
The main purpose of this method is to set the outcome values to their defaults.

BeginAttempt (htmlParent=None)
Called at the start of an attempt.

This method sets the default RESPONSE values and completionStatus if this is the first attempt and incre-
ments numAttempts accordingly.

SaveSession (params, htmlParent=None)
Called when we wish to save unsubmitted values.

SubmitSession (params, htmlParent=None)
Called when we wish to submit values (i.e., end an attempt).

EndAttempt ()
Called at the end of an attempt. Invokes response processing if present.

IsResponse (varName)
Return True if varName is the name of a response variable.

We add handling of the built-in response variables numAttempts and duration.

IsOutcome (varName)
Return True if varName is the name of an outcome variable.

We add handling of the built-in outcome variable completionStatus.

class pyslet.gtiv2.variables.TestSessionState (form)
Bases: pyslet.qgtiv2.variables.SessionState

Represents the state of a test session. The keys are the names of the variables including qualified names that
can be used to look up the value of variables from the associated item session states. form is the test form from
which the session should be created.

On construction, all declared variables (included built-in variables) are added to the session with NULL values.

test = None
the tests.AssessmentTest that this session is an instance of

t = None
the time of the last event

salt = None
a random string of bytes used to add entropy to the session key

key = None
A key representing this session in its current state, this key is initialised to a random value and changes as
each event is received. The key must be supplied when triggering subsequent events. The key is designed
to be unguessable and unique so a caller presenting the correct key when triggering an event can be securely
assumed to be the owner of the existing session.

prevKey = None
The key representing the previous state. This can be used to follow session state transitions back through
a chain of states back to the beginning of the session (i.e., for auditing).

keyMap = None
A mapping of keys previously used by this session. A caller presenting an expired key when triggering
an event generates a SessionKeyExpired exception. This condition might indicate that a session

3.3. IMS Question and Test Interoperability (version 2.1) 63

Pyslet Documentation, Release 0.6.20160201

response was not received (e.g., due to a connection failure) and that the session should be re-started with
the previous response.

GetCurrentTestPart ()
Returns the current test part or None if the test is finished.

GetCurrentQuestion ()
Returns the current question or None if the test is finished.

BeginSession (key, htmlParent=None)
Called at the start of a test session. Represents a ‘Start Test’ event.

The main purpose of this method is to set the outcome values to their defaults and to select the first
question.

GetNamespace (varName)
Takes a variable name varName and returns a tuple of namespace/varName.

The resulting namespace will be a dictionary or a dictionary-like object from which the value of the re-
turned varName object can be looked up.

IsResponse (varName)
Return True if varName is the name of a response variable. The test-level duration values are treated as
built-in responses and return True.

len_ ()
Returns the total length of all namespaces combined.

__getitem__ (varName)
Returns the Value instance corresponding to varName or raises KeyError if there is no variable with that
name.

class pyslet.qgtiv2.variables.Value
Bases: object

Represents a single value in the processing model.

This class is the heart of the QTI processing model. This is an abstract base class of a class hierarchy that
represents the various types of value that may be encountered when processing.

baseType = None
One of the BaseType constants or None if the baseType is unknown.

An unknown baseType acts like a wild-card. It means that the baseType is not determined and could
potentially be any of the BaseType values. This distinction has implications for the way evaluation is
done. A value with a baseType of None will not raise TypeErrors during evaluation if the cardinalities
match the context. This allows expressions which contain types bound only at runtime to be evaluated for
validity checking.

value = None
The value of the variable. The following representations are used for values of single cardinality:

NULL value Represented by None

boolean One of the built-in Python values True and False

directedPair A tuple of strings (<source identifier>, <destination identifier>)
duration real number of seconds

file a file like object (supporting seek)

float real number

identifier A text string

64 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

integer A plain python integer (QTI does not support long integer values)

pair A sorted tuple of strings (<identifier A>, <identifier B>). We sort the identifiers in a pair by python’s
native string sorting to ensure that pair values are comparable.

point A tuple of integers (<x-coordinate>, <y-coordinate>)
string A python string

uri An instance of URT

For containers, we use the following structures:

ordered A list of one of the above value types.

multiple: A dictionary with keys that are one of the above value types and values that indicate the fre-

quency of that value in the container.

record: A dictionary with keys that are the field identifiers and values that Value instances.

SetValue (value)
Sets the value.

All single values can be set from a single text string corresponding to their XML schema defined lexical
values (without character level escaping). If v is a single Value instance then the following always leaves

v unchanged:

v.SetValue (unicode (v))

Value instances can also be set from values of the appropriate type as described in va I ue. For base types

that are represented with tuples we also accept and convert lists.
Containers values cannot be set from strings.

ValueError (value)
Raises a ValueError with a debug-friendly message string.

Cardinality ()

Returns the cardinality of this value. One of the Cardinality constants.

By default we return None - indicating unknown cardinality. This can only be the case if the value is a

NULL.

IsNull ()

Returns True is this value is NULL, as defined by the QTI specification.

classmethod NewValue (cardinality, baseType=None)
Creates a new value instance with cardinality and baseType.

classmethod CopyValue (value)
Creates a new value instance copying value.

class pyslet.gtiv2.variables.SingleValue
Bases: pyslet.qtiv2.variables.Value

Represents all values with single cardinality.

classmethod NewValue (baseType, value=None)
Creates a new instance of a single value with baseType and value

class pyslet.gtiv2.variables.BooleanValue (value=None)
Bases: pyslet.qtiv2.variables.SingleValue

Represents single values of type BaseType .boolean.

3.3. IMS Question and Test Interoperability (version 2.1)

65

Pyslet Documentation, Release 0.6.20160201

SetValue (value)
If value is a string it will be decoded according to the rules for representing boolean values. Booleans
and integers can be used directly in the normal python way but other values will raise ValueError. To take
advantage of a non-zero test you must explicitly force it to be a boolean. For example:

x 1s a value of unknown type with non-zero test implemented
v=BooleanValue ()
v.SetValue (True if x else False)

class pyslet.qtiv2.variables.DirectedPairValue (value=None)
Bases: pyslet.qgtiv2.variables.SingleValue

Represents single values of type BaseType.directedPair.

SetValue (value, nameCheck=False)
See comment on Identifier.SetValue () for usage of nameCheck.

Note that if value is a string then nameCheck is ignored and identifier validation is always performed.

class pyslet.gtiv2.variables.DurationValue (value=None)
Bases: pyslet.qgtiv2.variables.FloatValue

Represents single value of type BaseType.duration.

class pyslet.qtiv2.variables.FileValue
Bases: pyslet.qgtiv2.variables.SingleValue

Represents single value of type BaseType.file.

contentType = None
The content type of the file, a pyslet.http.params.MediaType instance.

file_name = None
The file name to use for the file.

SetValue (value, type="application/octet-stream’, name="data.bin’)
Sets a file value from a file like object or a string.

There are some important and subtle distinctions in this method.

If value is a Unicode text string then it is parsed according to the MIME-like format defined in the QTI
specification. The values of fype and name are only used as defaults if those values cannot be read from
the value’s headers.

If value is a plain string then it is assumed to represent the file’s data directly, type and name are used to
interpret the data. Other file type objects are set in the same way.

class pyslet.gtiv2.variables.FloatValue (value=None)
Bases: pyslet.qgtiv2.variables.SingleValue

Represents single value of type BaseType . float.

SetValue (value)
This method will not convert integers to float values, you must do this explicitly if you want automatic
conversion, for example

x 1s a numeric value that may be float or integer
v=FloatValue ()
v.SetValue (float (x))

class pyslet.gtiv2.variables.IdentifierValue (value=None)
Bases: pyslet.qtiv2.variables.SingleValue

Represents single value of type BaseType.identifier.

66 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

SetValue (value, nameCheck=True)
In general, to speed up computation we do not check the validity of identifiers unless parsing the value
from a string representation (such as a value read from an XML input document).

As values of baseType identifier are represented natively as strings we cannot tell if this method is being
called with an existing, name-checked value or a new value being parsed from an external source. To
speed up computation you can suppress the name check in the first case by setting nameCheck to False
(the default is True).

class pyslet.gtiv2.variables.IntegerValue (value=None)
Bases: pyslet.gtiv2.variables.SingleValue

Represents single value of type BaseType . integer.

SetValue (value)
Note that integers and floats are distinct types in QTI: we do not accept floats where we would expect
integers or vice versa. However, integers are accepted from long or plain integer values provided they are
within the ranges specified in the QTI specification: -2147483648...2147483647.

class pyslet.gtiv2.variables.PairValue (value=None)
Bases: pyslet.qtiv2.variables.DirectedPairValue

Represents single values of type BaseType.pair.

SetValue (value, nameCheck=True)
Overrides DirectedPair’s implementation to force a predictable ordering on the identifiers.

class pyslet.gtiv2.variables.PointValue (value=None)
Bases: pyslet.gtiv2.variables.SingleValue

Represents single value of type BaseType .point.

class pyslet.gtiv2.variables.StringValue (value=None)
Bases: pyslet.qtiv2.variables.SingleValue

Represents single value of type BaseType.string.

class pyslet.gtiv2.variables.URIValue (value=None)
Bases: pyslet.qtiv2.variables.SingleValue

Represents single value of type BaseType.uri.

SetValue (value)
Sets a uri value from a string or another URI instance.

class pyslet.gtiv2.variables.Container (baseType=None)
Bases: pyslet.qtiv2.variables.Value

An abstract class for all container types.

By default containers are empty (and are treated as NULL values). You can force the type of an empty container
by passing a baseType constant to the constructor. This will cause the container to generate TypeError if used in
a context where the specified baseType is not allowed.

GetValues ()
Returns an iterable of the container’s values.

classmethod NewValue (cardinality, baseType=None)
Creates a new container with cardinality and baseType.

class pyslet.gtiv2.variables.OrderedContainer (baseType=None)
Bases: pyslet.qtiv2.variables.Container

Represents containers with ordered Cardinality.

3.3. IMS Question and Test Interoperability (version 2.1) 67

Pyslet Documentation, Release 0.6.20160201

SetValue (value, baseType=None)
Sets the value of this container from a list, tuple or other iterable. The list must contain valid representations
of baseType, items may be None indicating a NULL value in the list. In accordance with the specification’s
multiple operator NULL values are ignored.

If the input list of values empty, or contains only NULL values then the resulting container is empty.
If baseType is None the base type specified when the container was constructed is assumed.

GetValues ()
Returns an iterable of values in the ordered container.

class pyslet.gtiv2.variables.MultipleContainer (baseType=None)
Bases: pyslet.qtiv2.variables.Container

Represents containers with multiple Cardinality.

SetValue (value, baseType=None)
Sets the value of this container from a list, tuple or other iterable. The list must contain valid representations
of baseType, items may be None indicating a NULL value in the list. In accordance with the specification’s
multiple operator NULL values are ignored.

If the input list of values is empty, or contains only NULL values then the resulting container is empty.
If baseType is None the base type specified when the container was constructed is assumed.

GetValues ()
Returns an iterable of values in the ordered container.

class pyslet.qtiv2.variables.RecordContainer
Bases: pyslet.qgtiv2.variables.Container

Represents containers with record Cardinality.

SetValue (value)
Sets the value of this container from an existing dictionary in which the keys are the field identifiers and
the values are Value instances. You cannot parse containers from strings.

Records are always treated as having a wild-card base type.

If the input value contains any keys which map to None or to a NULL value then these fields are omitted
from the resulting value.

__getitem__ (fieldldentifier)
Returns the Va1 ue instance corresponding to fieldldentifier or raises KeyError if there is no field with that
name.

__setitem__ (fieldldentifier, value)
Sets the value in the named field to value.

We add some special behaviour here. If value is None or is a NULL value then we remove the field with
the give name. In other words:

r=RecordContainer ()

r['pi']=FloatValue (3.14)

r['pi']=FloatValue () # a NULL value
print r['pi'] # raises KeyError

68 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

3.3.6 Response Processing
Generalized Response Processing

class pyslet.qgtiv2.processing.ResponseProcessing (parent)

Bases: pyslet.qgtiv2.core.QTIElement

Response processing is the process by which the Delivery Engine assigns outcomes based on the candidate’s
responses:

<xsd:attributeGroup name="responseProcessing.AttrGroup">
<xsd:attribute name="template" type="uri.Type" use="optional"/>
<xsd:attribute name="templateLocation" type="uri.Type" use="optional"/>
</xsd:attributeGroup>

<xsd:group name="responseProcessing.ContentGroup">
<xsd:sequence>

<xsd:group ref="responseRule.ElementGroup" minOccurs="0" maxOccurs=

</xsd:sequence>

</xsd:group>

Run (state)
Runs response processing using the values in state.

estate is an ItemSessionState instance.

class pyslet.qtiv2.processing.ResponseRule (parent, name=None)

Bases: pyslet.qtiv2.core.QTIElement
Abstract class to represent all response rules.

Run (state)
Abstract method to run this rule using the values in state.

class pyslet.gtiv2.processing.ResponseCondition (parent)

Bases: pyslet.qtiv2.processing.ResponseRule

If the expression given in a responself or responseElself evaluates to true then the sub-rules contained within it
are followed and any following responseElself or responseElse parts are ignored for this response condition:

<xsd:group name="responseCondition.ContentGroup">
<xsd:sequence>
<xsd:element ref="responseIf" minOccurs="1" maxOccurs="1"/>

"unbounded" />

<xsd:element ref="responseElseIf" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element ref="responseElse" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
</xsd:group>

class pyslet.qtiv2.processing.ResponseIf (parent)

Bases: pyslet.qtiv2.core.QTIElement

A responself part consists of an expression which must have an effective baseType of boolean and single car-
dinality. If the expression is true then the sub-rules are processed, otherwise they are skipped (including if the
expression is NULL):

<xsd:group name="responself.ContentGroup">
<xsd:sequence>

<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1"/>
<xsd:group ref="responseRule.ElementGroup" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:group>

3.3. IMS Question and Test Interoperability (version 2.1) 69

Pyslet Documentation, Release 0.6.20160201

Run (state)
Run this test and, if True, any resulting rules.

Returns True if the condition evaluated to True.

class pyslet.qtiv2.processing.ResponseElseIf (parent)
Bases: pyslet.qtiv2.processing.Responself

Represents the responseElse element, see ResponseIf

<xsd:group name="responseElseIf.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1

<xsd:group ref="responseRule.ElementGroup" minOccurs="0" maxOccurs=
</xsd:sequence>
</xsd:group>

ll/>

"unbounded" />

class pyslet.gtiv2.processing.ResponseElse (parent)
Bases: pyslet.qtiv2.core.QTIElement

Represents the responseElse element, see ResponseCondition

<xsd:group name="responseElse.ContentGroup">
<xsd:sequence>
<xsd:group ref="responseRule.ElementGroup" minOccurs="0" maxOccurs=
</xsd:sequence>
</xsd:group>

Run (state)
Runs the sub-rules.

class pyslet.gtiv2.processing.SetOutcomeValue (parent)
Bases: pyslet.gtiv2.processing.ResponseRule

The setOutcomeValue rule sets the value of an outcome variable to the value obtained from the associated
expression:

<xsd:attributeGroup name="setOutcomeValue.AttrGroup">

<xsd:attribute name="identifier" type="identifier.Type" use="required"/>
</xsd:attributeGroup>

<xsd:group name="setOutcomeValue.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1/
</xsd:sequence>
</xsd:group>

class pyslet.qtiv2.processing.StopProcessing
Bases: pyslet.qtiv2.core.QTIError

Raised when a rule which stops processing is encountered.

class pyslet.qgtiv2.processing.ExitResponse (parent, name=None)
Bases: pyslet.qgtiv2.processing.ResponseRule

The exit response rule terminates response processing immediately (for this invocation). It does this by raising
StopProcessing:

<xsd:complexType name="exitResponse.Type"/>

70 Chapter 3. IMS Global Learning Consortium Specifications

"unbounded" />

/>

Pyslet Documentation, Release 0.6.20160201

3.3.7 Template Processing

class pyslet.qgtiv2.processing.TemplateProcessing (parent)

Bases: pyslet.qgtiv2.core.QTIElement

Template processing consists of one or more templateRules that are followed by the cloning engine or delivery
system in order to assign values to the template variables:

<xsd:group name="templateProcessing.ContentGroup">
<xsd:sequence>
<xsd:group ref="templateRule.ElementGroup" minOccurs="1" maxOccurs=
</xsd:sequence>
</xsd:group>

<xsd:complexType name="templateProcessing.Type" mixed="false">
<xsd:group ref="templateProcessing.ContentGroup"/>
</xsd:complexType>

Run (state)
Runs template processing rules using the values in state.

estate is an ItemSessionState instance.

class pyslet.gtiv2.processing.TemplateRule (parent, name=None)

Bases: pyslet.qtiv2.core.QTIElement
Abstract class to represent all template rules.

Run (state)
Abstract method to run this rule using the values in state.

class pyslet.qtiv2.processing.TemplateCondition (parent)

Bases: pyslet.qtiv2.processing. TemplateRule

If the expression given in the templatelf or templateElself evaluates to true then the sub-rules contained within
it are followed and any following templateElself or templateElse parts are ignored for this template condition:

<xsd:group name="templateCondition.ContentGroup">
<xsd:sequence>
<xsd:element ref="templateIf" minOccurs="1" maxOccurs="1"/>

"unbounded" />

<xsd:element ref="templateElseIf" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element ref="templateElse" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
</xsd:group>

class pyslet.qgtiv2.processing.TemplateIf (parent)

Bases: pyslet.qgtiv2.core.QTIElement

A templatelf part consists of an expression which must have an effective baseType of boolean and single car-
dinality. If the expression is true then the sub-rules are processed, otherwise they are skipped (including if the
expression is NULL):

<xsd:group name="templateIf.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1
<xsd:group ref="templateRule.ElementGroup" minOccurs="0" maxOccurs=|
</xsd:sequence>
</xsd:group>

Run (state)
Run this test and, if True, any resulting rules.

3.3. IMS Question and Test Interoperability (version 2.1) 71

ll/>

"unbounded" />

Pyslet Documentation, Release 0.6.20160201

Returns True if the condition evaluated to True.

class pyslet.gtiv2.processing.TemplateElseIf (parent)
Bases: pyslet.qgtiv2.processing.TemplateIlf

Represents the templateElse element, see templateIf

<xsd:group name="templateElseIf.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1
<xsd:group ref="templateRule.ElementGroup" minOccurs="0" maxOccurs=
</xsd:sequence>
</xsd:group>

ll/>

"unbounded" />

class pyslet.gtiv2.processing.TemplateElse (parent)
Bases: pyslet.qtiv2.core.QTIElement

Represents the templateElse element, see TemplateCondition

<xsd:group name="templateElse.ContentGroup">
<xsd:sequence>
<xsd:group ref="templateRule.ElementGroup" minOccurs="0" maxOccurs=
</xsd:sequence>
</xsd:group>

Run (state)
Runs the sub-rules.

class pyslet.qtiv2.processing.SetTemplateValue (parent)
Bases: pyslet.qtiv2.processing. TemplateRule

The setTemplateValue rule sets the value of a template variable to the value obtained from the associated ex-
pression:

<xsd:attributeGroup name="setTemplateValue.AttrGroup">

<xsd:attribute name="identifier" type="identifier.Type" use="required"/>
</xsd:attributeGroup>

<xsd:group name="setTemplateValue.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1/
</xsd:sequence>
</xsd:group>

class pyslet.qgtiv2.processing.SetCorrectResponse (parent)
Bases: pyslet.qgtiv2.processing. TemplateRule

The setCorrectResponse rule sets the correct value of a response variable to the value obtained from the associ-
ated expression:

<xsd:attributeGroup name="setCorrectResponse.AttrGroup">

<xsd:attribute name="identifier" type="identifier.Type" use="required"/>
</xsd:attributeGroup>

<xsd:group name="setCorrectResponse.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1"
</xsd:sequence>
</xsd:group>

class pyslet.qgtiv2.processing.SetDefaultValue (parent)
Bases: pyslet.qgtiv2.processing. TemplateRule

72 Chapter 3. IMS Global Learning Consortium Specifications

"unbounded" />

/>

/>

Pyslet Documentation, Release 0.6.20160201

The setDefaultValue rule sets the default value of a response or outcome variable to the value obtained from the
associated expression:

<xsd:attributeGroup name="setDefaultValue.AttrGroup">

<xsd:attribute name="identifier" type="identifier.Type" use="required"/>
</xsd:attributeGroup>

<xsd:group name="setDefaultValue.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:group>

class pyslet.qgtiv2.processing.ExitTemplate (parent, name=None)
Bases: pyslet.qtiv2.processing. TemplateRule

The exit template rule terminates template processing immediately. It does this by raising St opProcessing:

’ <xsd:complexType name="exitTemplate.Type"/>

3.3.8 Pre-conditions and Branching

class pyslet.gtiv2.processing.TestPartCondition (parent)
Bases: pyslet.qgtiv2.core.QTIElement

Evaluate (state)
Evaluates the condition using the values in state.

estate is a Test SessionState instance.

class pyslet.qtiv2.processing.PreCondition (parent)
Bases: pyslet.qtiv2.processing.TestPartCondition

A preCondition is a simple expression attached to an assessmentSection or assessmentltemRef that must evalu-
ate to true if the item is to be presented:

<xsd:group name="preCondition.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:group>

class pyslet.qtiv2.processing.BranchRule (parent)
Bases: pyslet.qtiv2.processing.TestPartCondition

A branch-rule is a simple expression attached to an assessmentltemRef, assessmentSection or testPart that is
evaluated after the item, section, or part has been presented to the candidate:

<xsd:attributeGroup name="branchRule.AttrGroup">

<xsd:attribute name="target" type="identifier.Type" use="required"/>
</xsd:attributeGroup>

<xsd:group name="branchRule.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1|"/>
</xsd:sequence>
</xsd:group>

class pyslet.gtiv2.processing.TemplateDefault (parent)
Bases: pyslet.qtiv2.core.QTIElement

3.3. IMS Question and Test Interoperability (version 2.1) 73

Pyslet Documentation, Release 0.6.20160201

Overrides the default value of a template variable based on the test context in which the template is instantiated:

<xsd:attributeGroup name="templateDefault.AttrGroup">
<xsd:attribute name="templateIdentifier" type="identifier.Type" use="requir
</xsd:attributeGroup>

<xsd:group name="templateDefault.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1
</xsd:sequence>

</xsd:group>

Run (itemState, testState)
Updates the value of a template variable in itemState based on the values in festState.

3.3.9 Expressions

class pyslet.qgtiv2.expressions.Expression (parent, name=None)

Bases: pyslet.qgtiv2.core.QTIElement
Abstract class for all expression elements.

Evaluate (state)
Evaluates this expression in the context of the session state.

IntegerOrTemplateRef (state, value)
Given a value of type integerOrTemplateRef this method returns the corresponding integer by looking up
the value, if necessary, in state. If value is a variable reference to a variable with NULL value then None
is returned.

FloatOrTemplateRef (state, value)
Given a value of type floatOrTemplateRef this method returns the corresponding float by looking up the
value, if necessary, in state. If value is a variable reference to a variable with NULL value then None is
returned.

StringOrTemplateRef (state, value)
Given a value of type stringOrTemplateRef this method returns the corresponding string by looking up the
value, if necessary, in state. If value is a variable reference to a variable with NULL value then None is
returned. Note that unlike the integer and float expansions this expansion will not raise an error if value is
a syntactically valid reference to a non-existent template variable, as per this condition in the specification.

“if a string attribute appears to be a reference to a template variable but there is no variable with
the given name it should be treated simply as string value”

class pyslet.qtiv2.expressions.NOperator (parent)

Bases: pyslet.qtiv2.expressions.Expression
An abstract class to help implement operators which take multiple sub-expressions.

EvaluateChildren (state)
Evaluates all child expressions, returning an iterable of Value instances.

class pyslet.gtiv2.expressions.UnaryOperator (parent)

Bases: pyslet.qtiv2.expressions.Expression

An abstract class to help implement unary operators.

74

Chapter 3. IMS Global Learning Consortium Specifications

ed" />

ll/>

Pyslet Documentation, Release 0.6.20160201

Built-in General Expressions

class pyslet.gtiv2.expressions.BaseValue (parent)
Bases: pyslet.qgtiv2.expressions.Expression

The simplest expression returns a single value from the set defined by the given baseType

<xsd:attributeGroup name="baseValue.AttrGroup">

<xsd:attribute name="baseType" type="baseType.Type" use="required"/>
</xsd:attributeGroup>

<xsd:complexType name="baseValue.Type">
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attributeGroup ref="baseValue.AttrGroup"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

class pyslet.qgtiv2.expressions.Variable (parent)
Bases: pyslet.qgtiv2.expressions.Expression

This expression looks up the value of an itemVariable that has been declared in a corresponding variableDecla-
ration or is one of the built-in variables:

<xsd:attributeGroup name="variable.AttrGroup">
<xsd:attribute name="identifier" type="identifier.Type" use="required"/>

<xsd:attribute name="weightIdentifier" type="identifier.Type" use="optional/"/>
</xsd:attributeGroup>

class pyslet.qgtiv2.expressions.Default (parent)
Bases: pyslet.qtiv2.expressions.Expression

This expression looks up the declaration of an itemVariable and returns the associated defaultValue or NULL if
no default value was declared:

<xsd:attributeGroup name="default.AttrGroup">

<xsd:attribute name="identifier" type="identifier.Type" use="required"/>
</xsd:attributeGroup>

class pyslet.qgtiv2.expressions.Correct (parent)
Bases: pyslet.qgtiv2.expressions.Expression

This expression looks up the declaration of a response variable and returns the associated correctResponse or
NULL if no correct value was declared:

<xsd:attributeGroup name="correct.AttrGroup">

<xsd:attribute name="identifier" type="identifier.Type" use="required"/>
</xsd:attributeGroup>

class pyslet.qtiv2.expressions.MapResponse (parent)
Bases: pyslet.qtiv2.expressions.Expression

This expression looks up the value of a response variable and then transforms it using the associated mapping,
which must have been declared. The result is a single float:

<xsd:attributeGroup name="mapResponse.AttrGroup">

<xsd:attribute name="identifier" type="identifier.Type" use="required"/>
</xsd:attributeGroup>

3.3. IMS Question and Test Interoperability (version 2.1) 75

Pyslet Documentation, Release 0.6.20160201

class pyslet.gtiv2.expressions.MapResponsePoint (parent)
Bases: pyslet.qtiv2.expressions.Expression

This expression looks up the value of a response variable that must be of base-type point, and transforms it using
the associated areaMapping:

<xsd:attributeGroup name="mapResponsePoint.AttrGroup">
<xsd:attribute name="identifier" type="identifier.Type" use="required"/>
</xsd:attributeGroup>

class pyslet.qtiv2.expressions.Null (parent, name=None)
Bases: pyslet.qgtiv2.expressions.Expression

null is a simple expression that returns the NULL value - the null value is treated as if it is of any desired
baseType

<xsd:complexType name="null.Type"/>

class pyslet.gtiv2.expressions.RandomInteger (parent)
Bases: pyslet.qtiv2.expressions.Expression

Selects a random integer from the specified range [min,max] satisfying min + step * n for some integer n:

<xsd:attributeGroup name="randomInteger.AttrGroup">
<xsd:attribute name="min" type="integerOrTemplateRef.Type" use="required"/>|
<xsd:attribute name="max" type="integerOrTemplateRef.Type" use="required"/>|
<xsd:attribute name="step" type="integerOrTemplateRef.Type" use="optional"/
</xsd:attributeGroup>

\

class pyslet.gtiv2.expressions.RandomFloat (parent)
Bases: pyslet.qtiv2.expressions.Expression

Selects a random float from the specified range [min,max]

<xsd:attributeGroup name="randomFloat.AttrGroup">
<xsd:attribute name="min" type="floatOrTemplateRef.Type" use="required"/>
<xsd:attribute name="max" type="floatOrTemplateRef.Type" use="required"/>
</xsd:attributeGroup>

Expressions Used only in Outcomes Processing
Operators
class pyslet.qgtiv2.expressions.Multiple (parent)

Bases: pyslet.qtiv2.expressions.NOperator

The multiple operator takes O or more sub-expressions all of which must have either single or multiple cardinal-
ity:

<xsd:group name="multiple.ContentGroup">

<xsd:sequence>

<xsd:group ref="expression.ElementGroup" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:group>

class pyslet.qgtiv2.expressions.Ordered (parent)
Bases: pyslet.gtiv2.expressions.NOperator

The multiple operator takes O or more sub-expressions all of which must have either single or multiple cardinal-
ity:

76 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

<xsd:group name="ordered.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:group>

class pyslet.qtiv2.expressions.ContainerSize (parent)
Bases: pyslet.qtiv2.expressions.UnaryOperator

The containerSize operator takes a sub-expression with any base-type and either multiple or ordered cardinality:

<xsd:group name="containerSize.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:group>

class pyslet.qtiv2.expressions.IsNull (parent)
Bases: pyslet.qtiv2.expressions.UnaryOperator

The isNull operator takes a sub-expression with any base-type and cardinality

<xsd:group name="isNull.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:group>

class pyslet.qgtiv2.expressions.Index (parent)
Bases: pyslet.qtiv2.expressions.UnaryOperator

The index operator takes a sub-expression with an ordered container value and any base-type

<xsd:attributeGroup name="index.AttrGroup">

<xsd:attribute name="n" type="integer.Type" use="required"/>
</xsd:attributeGroup>

<xsd:group name="index.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:group>

class pyslet.qtiv2.expressions.FieldValue (parent)
Bases: pyslet.qgtiv2.expressions.UnaryOperator

The field-value operator takes a sub-expression with a record container value. The result is the value of the field
with the specified fieldIdentifier:

<xsd:attributeGroup name="fieldValue.AttrGroup">

<xsd:attribute name="fieldIdentifier" type="identifier.Type" use="required"|/>
</xsd:attributeGroup>

<xsd:group name="fieldValue.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:group>

class pyslet.qgtiv2.expressions.Random (parent)
Bases: pyslet.gtiv2.expressions.UnaryOperator

3.3. IMS Question and Test Interoperability (version 2.1) 77

Pyslet Documentation, Release 0.6.20160201

The random operator takes a sub-expression with a multiple or ordered container value and any base-type. The
result is a single value randomly selected from the container:

<xsd:group name="random.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1
</xsd:sequence>
</xsd:group>

ll/>

class pyslet.qtiv2.expressions.Member (parent)

Bases: pyslet.qgtiv2.expressions.NOperator

The member operator takes two sub-expressions which must both have the same base-type. The first sub-
expression must have single cardinality and the second must be a multiple or ordered container. The result is a
single boolean with a value of true if the value given by the first sub-expression is in the container defined by
the second sub-expression:

<xsd:group name="member.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="2" maxOccurs="2
</xsd:sequence>
</xsd:group>

class pyslet.qgtiv2.expressions.Delete (parent)

Bases: pyslet.qtiv2.expressions.NOperator

The delete operator takes two sub-expressions which must both have the same base-type. The first sub-
expression must have single cardinality and the second must be a multiple or ordered container. The result is a
new container derived from the second sub-expression with all instances of the first sub-expression removed:

<xsd:group name="delete.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="2" maxOccurs="2
</xsd:sequence>
</xsd:group>

class pyslet.gtiv2.expressions.Contains (parent)

Bases: pyslet.qtiv2.expressions.NOperator

The contains operator takes two sub-expressions which must both have the same base-type and cardinality —
either multiple or ordered. The result is a single boolean with a value of true if the container given by the first
sub-expression contains the value given by the second sub-expression and false if it doesn’t:

<xsd:group name="contains.ContentGroup">
<xsd:sequence>

"/>

"/>

<xsd:group ref="expression.ElementGroup" minOccurs="2" maxOccurs="2/"/>

</xsd:sequence>
</xsd:group>

class pyslet.qgtiv2.expressions.SubString (parent)

Bases: pyslet.qgtiv2.expressions.NOperator

The substring operator takes two sub-expressions which must both have an effective base-type of string and
single cardinality. The result is a single boolean with a value of true if the first expression is a substring of the
second expression and false if it isn’t:

<xsd:attributeGroup name="substring.AttrGroup">

<xsd:attribute name="caseSensitive" type="boolean.Type" use="required"/>
</xsd:attributeGroup>

78

Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

<xsd:group name="substring.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="2" maxOccurs="2/"/>
</xsd:sequence>
</xsd:group>

class pyslet.qtiv2.expressions.Not (parent)
Bases: pyslet.qtiv2.expressions.UnaryOperator

The not operator takes a single sub-expression with a base-type of boolean and single cardinality. The result is
a single boolean with a value obtained by the logical negation of the sub-expression’s value:

<xsd:group name="not.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:group>

class pyslet.qtiv2.expressions.And (parent)
Bases: pyslet.qtiv2.expressions.NOperator

The and operator takes one or more sub-expressions each with a base-type of boolean and single cardinality.
The result is a single boolean which is true if all sub-expressions are true and false if any of them are false:

<xsd:group name="and.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:group>

class pyslet.qtiv2.expressions.Or (parent)
Bases: pyslet.qtiv2.expressions.NOperator

The or operator takes one or more sub-expressions each with a base-type of boolean and single cardinality. The
result is a single boolean which is true if any of the sub-expressions are true and false if all of them are false:

<xsd:group name="or.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:group>

class pyslet.qtiv2.expressions.AnyN (parent)
Bases: pyslet.qtiv2.expressions.NOperator

The anyN operator takes one or more sub-expressions each with a base-type of boolean and single cardinality.
The result is a single boolean which is true if at least min of the sub-expressions are true and at most max of the
sub-expressions are true:

<xsd:attributeGroup name="anyN.AttrGroup">
<xsd:attribute name="min" type="integerOrTemplateRef.Type" use="required"/>
<xsd:attribute name="max" type="integerOrTemplateRef.Type" use="required"/>

</xsd:attributeGroup>

<xsd:group name="anyN.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:group>

3.3. IMS Question and Test Interoperability (version 2.1) 79

Pyslet Documentation, Release 0.6.20160201

class pyslet.qgtiv2.expressions.Match (parent)
Bases: pyslet.qtiv2.expressions.NOperator

The match operator takes two sub-expressions which must both have the same base-type and cardinality. The
result is a single boolean with a value of true if the two expressions represent the same value and false if they do
not:

<xsd:group name="match.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="2" maxOccurs="2
</xsd:sequence>
</xsd:group>

"/>

class pyslet.qgtiv2.expressions.StringMatch (parent)
Bases: pyslet.qtiv2.expressions.NOperator

The stringMatch operator takes two sub-expressions which must have single and a base-type of string. The
result is a single boolean with a value of true if the two strings match:

<xsd:attributeGroup name="stringMatch.AttrGroup">
<xsd:attribute name="caseSensitive" type="boolean.Type" use="required"/>
<xsd:attribute name="substring" type="boolean.Type" use="optional"/>
</xsd:attributeGroup>

<xsd:group name="stringMatch.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="2" maxOccurs="2
</xsd:sequence>
</xsd:group>

"/>

class pyslet.gtiv2.expressions.PatternMatch (parent)
Bases: pyslet.qtiv2.expressions.UnaryOperator

The patternMatch operator takes a sub-expression which must have single cardinality and a base-type of string.
The result is a single boolean with a value of true if the sub-expression matches the regular expression given by
pattern and false if it doesn’t:

<xsd:attributeGroup name="patternMatch.AttrGroup">

<xsd:attribute name="pattern" type="stringOrTemplateRef.Type" use="required
</xsd:attributeGroup>

<xsd:group name="patternMatch.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1
</xsd:sequence>
</xsd:group>

class pyslet.qgtiv2.expressions.Equal (parent)
Bases: pyslet.qgtiv2.expressions.NOperator

The equal operator takes two sub-expressions which must both have single cardinality and have a numerical
base-type. The result is a single boolean with a value of true if the two expressions are numerically equal and
false if they are not:

<xsd:attributeGroup name="equal.AttrGroup">

ll/>

ll/>

<xsd:attribute name="toleranceMode" type="toleranceMode.Type" use="required"/>

<xsd:attribute name="tolerance" use="optional">
<xsd:simpleType>
<xsd:list itemType="floatOrTemplateRef.Type"/>
</xsd:simpleType>

80 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

</xsd:attribute>

<xsd:attribute name="includeLowerBound" type="boolean.Type" use="optional"/

<xsd:attribute name="includeUpperBound" type="boolean.Type" use="optional"/
</xsd:attributeGroup>

<xsd:group name="equal.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="2" maxOccurs="2
</xsd:sequence>
</xsd:group>

vV Vv

ll/>

class pyslet.gtiv2.expressions.ToleranceMode
Bases: pyslet.xsdatatypes20041028.Enumeration

When comparing two floating point numbers for equality it is often desirable to have a tolerance to ensure that
spurious errors in scoring are not introduced by rounding errors. The tolerance mode determines whether the
comparison is done exactly, using an absolute range or a relative range:

<xsd:simpleType name="toleranceMode.Type">
<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="absolute"/>
<xsd:enumeration value="exact"/>
<xsd:enumeration value="relative"/>
</xsd:restriction>
</xsd:simpleType>

Defines constants for the above modes. Usage example:

ToleranceMode.exact ‘

The default value is exact:

ToleranceMode .DEFAULT == ToleranceMode.exact ‘

For more methods see Enumeration

class pyslet.gtiv2.expressions.EqualRounded (parent)
Bases: pyslet.qtiv2.expressions.NOperator

The equalRounded operator takes two sub-expressions which must both have single cardinality and have a
numerical base-type. The result is a single boolean with a value of true if the two expressions are numerically
equal after rounding and false if they are not:

<xsd:attributeGroup name="equalRounded.AttrGroup">
<xsd:attribute name="roundingMode" type="roundingMode.Type" use="required"/
<xsd:attribute name="figures" type="integerOrTemplateRef.Type" use="require
</xsd:attributeGroup>

<xsd:group name="equalRounded.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="2" maxOccurs="2
</xsd:sequence>
</xsd:group>

class pyslet.gtiv2.expressions.RoundingMode
Bases: pyslet.xsdatatypes20041028.Enumeration

Numbers are rounded to a given number of significantFigures or decimalPlaces:

<xsd:simpleType name="roundingMode.Type">
<xsd:restriction base="xsd:NMTOKEN">

3.3. IMS Question and Test Interoperability (version 2.1) 81

>
d"/>

ll/>

Pyslet Documentation, Release 0.6.20160201

<xsd:enumeration value="decimalPlaces"/>
<xsd:enumeration value="significantFigures"/>
</xsd:restriction>
</xsd:simpleType>

Defines constants for the above modes. Usage example:

RoundingMode.decimalPlaces ‘

The default value is significantFigures:

RoundingMode .DEFAULT == RoundingMode.significantFigures ‘

For more methods see Enumeration

class pyslet.qgtiv2.expressions.Inside (parent)
Bases: pyslet.qgtiv2.expressions.UnaryOperator,pyslet.qtiv2.core.ShapeElementMixin

The inside operator takes a single sub-expression which must have a baseType of point. The result is a single
boolean with a value of true if the given point is inside the area defined by shape and coords. If the sub-expression
is a container the result is true if any of the points are inside the area:

<xsd:attributeGroup name="inside.AttrGroup">
<xsd:attribute name="shape" type="shape.Type" use="required"/>
<xsd:attribute name="coords" type="coords.Type" use="required"/>
</xsd:attributeGroup>

<xsd:group name="inside.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:group>

class pyslet.qtiv2.expressions.LT (parent)
Bases: pyslet.qtiv2.expressions.NOperator

The 1t operator takes two sub-expressions which must both have single cardinality and have a numerical base-
type. The result is a single boolean with a value of true if the first expression is numerically less than the second
and false if it is greater than or equal to the second:

<xsd:group name="1lt.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="2" maxOccurs="2"/>
</xsd:sequence>
</xsd:group>

class pyslet.qtiv2.expressions.GT (parent)
Bases: pyslet.qtiv2.expressions.NOperator

The gt operator takes two sub-expressions which must both have single cardinality and have a numerical base-
type. The result is a single boolean with a value of true if the first expression is numerically greater than the
second and false if it is less than or equal to the second:

<xsd:group name="gt.ContentGroup">
<xsd:sequence>

<xsd:group ref="expression.ElementGroup" minOccurs="2" maxOccurs="2/"/>

</xsd:sequence>
</xsd:group>

class pyslet.qtiv2.expressions.LTE (parent)
Bases: pyslet.qgtiv2.expressions.NOperator

82 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

The lte operator takes two sub-expressions which must both have single cardinality and have a numerical base-
type. The result is a single boolean with a value of true if the first expression is numerically less than or equal
to the second and false if it is greater than the second:

<xsd:group name="lte.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="2" maxOccurs="2/"/>
</xsd:sequence>
</xsd:group>

class pyslet.qtiv2.expressions.GTE (parent)
Bases: pyslet.qtiv2.expressions.NOperator

The gte operator takes two sub-expressions which must both have single cardinality and have a numerical base-
type. The result is a single boolean with a value of true if the first expression is numerically less than or equal
to the second and false if it is greater than the second:

<xsd:group name="durationGTE.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="2" maxOccurs="2/"/>
</xsd:sequence>
</xsd:group>

class pyslet.qtiv2.expressions.DurationLT (parent)
Bases: pyslet.qtiv2.expressions.NOperator

The durationLT operator takes two sub-expressions which must both have single cardinality and base-type du-
ration. The result is a single boolean with a value of true if the first duration is shorter than the second and false
if it is longer than (or equal) to the second:

<xsd:group name="durationLT.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="2" maxOccurs="2"/>
</xsd:sequence>
</xsd:group>

class pyslet.qgtiv2.expressions.DurationGTE (parent)
Bases: pyslet.qtiv2.expressions.NOperator

The durationGTE operator takes two sub-expressions which must both have single cardinality and base-type
duration. The result is a single boolean with a value of true if the first duration is longer (or equal, within the
limits imposed by truncation) than the second and false if it is shorter than the second:

<xsd:group name="durationGTE.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="2" maxOccurs="2/"/>
</xsd:sequence>
</xsd:group>

class pyslet.qgtiv2.expressions.Sum (parent)
Bases: pyslet.qgtiv2.expressions.NOperator

The sum operator takes 1 or more sub-expressions which all have single cardinality and have numerical base-
types. The result is a single float or, if all sub-expressions are of integer type, a single integer that corresponds
to the sum of the numerical values of the sub-expressions:

<xsd:group name="sum.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="unbounded"/>

3.3. IMS Question and Test Interoperability (version 2.1) 83

Pyslet Documentation, Release 0.6.20160201

</xsd:sequence>
</xsd:group>

class pyslet.qgtiv2.expressions.Product (parent)

Bases: pyslet.qgtiv2.expressions.NOperator

The product operator takes 1 or more sub-expressions which all have single cardinality and have numerical base-
types. The result is a single float or, if all sub-expressions are of integer type, a single integer that corresponds
to the product of the numerical values of the sub-expressions:

<xsd:group name="product.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="u
</xsd:sequence>
</xsd:group>

class pyslet.qtiv2.expressions.Subtract (parent)

Bases: pyslet.qtiv2.expressions.NOperator

The subtract operator takes 2 sub-expressions which all have single cardinality and numerical base-types. The
result is a single float or, if both sub-expressions are of integer type, a single integer that corresponds to the first
value minus the second:

<xsd:group name="subtract.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="2" maxOccurs="2
</xsd:sequence>
</xsd:group>

class pyslet.qtiv2.expressions.Divide (parent)

Bases: pyslet.qtiv2.expressions.NOperator

The divide operator takes 2 sub-expressions which both have single cardinality and numerical base-types. The
result is a single float that corresponds to the first expression divided by the second expression:

<xsd:group name="divide.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="2" maxOccurs="2
</xsd:sequence>
</xsd:group>

class pyslet.qgtiv2.expressions.Power (parent)

Bases: pyslet.qtiv2.expressions.NOperator

The power operator takes 2 sub-expression which both have single cardinality and numerical base-types. The
result is a single float that corresponds to the first expression raised to the power of the second:

<xsd:group name="power.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="2" maxOccurs="2
</xsd:sequence>
</xsd:group>

class pyslet.gtiv2.expressions.IntegerDivide (parent)

Bases: pyslet.qtiv2.expressions.NOperator

The integer divide operator takes 2 sub-expressions which both have single cardinality and base-type integer.
The result is the single integer that corresponds to the first expression (x) divided by the second expression (y)
rounded down to the greatest integer (i) such that i<=(x/y):

84

Chapter 3. IMS Global Learning Consortium Specifications

nbounded" />

"/>

"/>

"/>

Pyslet Documentation, Release 0.6.20160201

<xsd:group name="integerDivide.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="2" maxOccurs="2/"/>
</xsd:sequence>
</xsd:group>

class pyslet.qtiv2.expressions.IntegerModulus (parent)
Bases: pyslet.qtiv2.expressions.NOperator

The integer modulus operator takes 2 sub-expressions which both have single cardinality and base-type integer.
The result is the single integer that corresponds to the remainder when the first expression (x) is divided by the
second expression (y). If z is the result of the corresponding integerDivide operator then the result is x-z*y:

<xsd:group name="integerModulus.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="2" maxOccurs="2/"/>
</xsd:sequence>
</xsd:group>

class pyslet.qgtiv2.expressions. Truncate (parent)
Bases: pyslet.qgtiv2.expressions.UnaryOperator

The truncate operator takes a single sub-expression which must have single cardinality and base-type float. The
result is a value of base-type integer formed by truncating the value of the sub-expression towards zero:

<xsd:group name="truncate.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:group>

class pyslet.qtiv2.expressions.Round (parent)
Bases: pyslet.qtiv2.expressions.UnaryOperator

The round operator takes a single sub-expression which must have single cardinality and base-type float. The
result is a value of base-type integer formed by rounding the value of the sub-expression. The result is the
integer n for all input values in the range [n-0.5,n+0.5):

<xsd:group name="round.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:group>

class pyslet.qgtiv2.expressions.IntegerToFloat (parent)
Bases: pyslet.qgtiv2.expressions.UnaryOperator

The integer to float conversion operator takes a single sub-expression which must have single cardinality and
base-type integer. The result is a value of base type float with the same numeric value:

<xsd:group name="integerToFloat.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:group>

class pyslet.qtiv2.expressions.CustomOperator (parent)
Bases: pyslet.qtiv2.expressions.NOperator

The custom operator provides an extension mechanism for defining operations not currently supported by this
specification:

3.3. IMS Question and Test Interoperability (version 2.1) 85

Pyslet Documentation, Release 0.6.20160201

<xsd:attributeGroup name="customOperator.AttrGroup">
<xsd:attribute name="class" type="identifier.Type" use="optional"/>
<xsd:attribute name="definition" type="uri.Type" use="optional"/>
<xsd:anyAttribute namespace="##other"/>

</xsd:attributeGroup>

<xsd:group name="customOperator.ContentGroup">
<xsd:sequence>
<xsd:group ref="expression.ElementGroup" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:group>

3.3.10 Core Types and Utilities

This module contains a number core classes used to support the standard.

Constants
pyslet.qgtiv2.core.IMSQTI_NAMESPACE = ‘http://www.imsglobal.org/xsd/imsqti_v2p1’
The namespace used to recognise elements in XML documents.

pyslet.gtiv2.core.IMSQTI_SCHEMALOCATION = ‘http://www.imsglobal.org/xsd/imsqti_v2p1.xsd’
The location of the QTI 2.1 schema file on the IMS website.

pyslet.gtiv2.core.IMSQTI_ITEM RESOURCETYPE = ‘imsqti_item_xmlv2p1’
The resource type to use for the QTI 2.1 items when added to content packages.

XML Basics

class pyslet.qtiv2.core.QTIElement (parent, name=None)
Bases: pyslet.xmlnames20091208.XMLNSElement
Basic element to represent all QTI elements

AddToCPResource (cp, resource, beenThere)
We need to add any files with URL’s in the local file system to the content package.

beenThere is a dictionary we use for mapping URLSs to File objects so that we don’t keep adding the same
linked resource multiple times.

This implementation is a little more horrid, we avoid circular module references by playing dumb about
our children. HTML doesn’t actually know anything about QTI even though QTI wants to define children
for some XHTML elements so we pass the call only to “CP-Aware” elements.

class pyslet.qtiv2.core.QTIDocument (**args)
Bases: pyslet.xmlnames20091208.XMLNSDocument

Used to represent all documents representing information from the QTI v2 specification.

AddToContentPackage (cp, metadata, dName=None)
Copies this QTI document into a content package and returns the resource ID used.

An optional directory name can be specified in which to put the resource files.

86 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

Exceptions

class pyslet.qtiv2.core.QTIError
Bases: exceptions.Exception
Abstract class used for all QTI v2 exceptions.

class pyslet.qtiv2.core.DeclarationError
Bases: pyslet.qtiv2.core.QTIError

Error raised when a variable declaration is invalid.

class pyslet.gtiv2.core.ProcessingError
Bases: pyslet.qtiv2.core.QTIError

Error raised when an invalid processing element is encountered.

class pyslet.qgtiv2.core.SelectionError
Bases: pyslet.qtiv2.core.QTIError

Error raised when there is a problem with creating test forms.

Basic Data Types

Basic data types in QTI v2 are a mixture of custom types and basic types defined externally, for example, by
XMLSchema.

The external types used are:

boolean Represented by python’s boolean values True and False. See DecodeBoolean () and
EncodeBoolean ()

coords Defined as part of support for HTML. See Coords

date Although QTTI draws on the definitions in XML schema it restricts values to those from the nontimezoned time-
line. This restriction is effectively implemented in the basic Dat e class.

datetime: See DecodeDateTime () and EncodeDateTime ()

duration: Earlier versions of QTI drew on the ISO8601 representation of duration but QTT v2 simplifies this with a
basic representation in seconds bound to XML Schema’s double type which we, in turn, represent with python’s
float. See DecodeDouble () and EncodeDouble ()

float: implemented by python’s float. Note that this is defined as having “machine-level double precision” and the
python specification goes on to warn that “You are at the mercy of the underlying machine architecture”. See
DecodeDouble () and EncodeDouble ()

identifier: represented by python’s (unicode) string. The type is effectively just the NCName from the XML names-
pace specification. See pyslet .xmlnames20091208.IsValidNCName ().

pyslet.gtiv2.core.ValidateIdentifier (value, prefix="_")
Decodes an identifier from a string:

<xsd:simpleType name="identifier.Type">
<xsd:restriction base="xsd:NCName"/>
</xsd:simpleType>

This function takes a string that is supposed to match the production for NCName in XML and forces
it to comply by replacing illegal characters with ‘_’, except the ‘> which is replaced with a hyphen for
compatibility with previous versions of the QTI migraiton script. If name starts with a valid name character

but not a valid name start character, it is prefixed with ‘_’ too, but the prefix string used can be overridden.

3.3. IMS Question and Test Interoperability (version 2.1) 87

Pyslet Documentation, Release 0.6.20160201

integer: XML schema’s integer, implemented by python’s integer. See DecodeInteger () and
EncodelInteger ()

language: Currently implemented as a simple python string.

length: Defined as part of support for HTML. See LengthType

mimeType: Currently implemented as a simple python string

string: XML schema string becomes python’s unicode string

string256: Length restriction not yet implemented, see string above.
styleclass: Inherited from HTML, implemented with a simple (unicode) string.

uri: In some instances this is implemented as a simple (unicode) string, for example, in cases where a URI is being
used as global identifier. In contexts where the URI will need to be interpreted it is implemented with instances
of pyslet.rfc2396.URI.

QTTI-specific types:

class pyslet.qgtiv2.core.Orientation
Bases: pyslet.xsdatatypes20041028.Enumeration

Orientation attribute values provide a hint to rendering systems that an element has an inherent vertical or
horizontal interpretation:

<xsd:simpleType name="orientation.Type">
<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="horizontal"/>
<xsd:enumeration value="vertical"/>
</xsd:restriction>
</xsd:simpleType>

Defines constants for the above orientations. Usage example:

Orientation.horizontal

Note that:

Orientation.DEFAULT == None

For more methods see Enumeration

class pyslet.gtiv2.core.Shape
Bases: pyslet.xsdatatypes20041028.Enumeration

A value of a shape is always accompanied by coordinates and an associated image which provides a context for
interpreting them:

<xsd:simpleType name="shape.Type">
<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="circle"/>
<xsd:enumeration value="default"/>
<xsd:enumeration value="ellipse"/>
<xsd:enumeration value="poly"/>
<xsd:enumeration value="rect"/>
</xsd:restriction>
</xsd:simpleType>

Defines constants for the above types of Shape. Usage example:

Shape.circle

88 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

Note that:

Shape .DEFAULT == Shape.default

For more methods see Enumeration

class pyslet.qtiv2.core.ShowHide
Bases: pyslet.xsdatatypes20041028.Enumeration

Used to control content visibility with variables

<xsd:simpleType name="showHide.Type">
<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="hide"/>
<xsd:enumeration value="show"/>
</xsd:restriction>
</xsd:simpleType>

Note that ShowHide. DEFAULT == ShowHide.show

class pyslet.qgtiv2.core.View
Bases: pyslet.xsdatatypes20041028.Enumeration

Used to represent roles when restricting view:

<xsd:simpleType name="view.Type">
<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="author"/>
<xsd:enumeration value="candidate"/>
<xsd:enumeration value="proctor"/>
<xsd:enumeration value="scorer"/>
<xsd:enumeration value="testConstructor"/>
<xsd:enumeration value="tutor"/>
</xsd:restriction>
</xsd:simpleType>

Defines constants for the above views. Usage example:

View.candidate

There is no default view. Views are represented in XML as space-separated lists of values. Typical usage:

view=View.DecodeValueDict ("tutor scorer")

returns...

{ View.tutor:'tutor', View.scorer:'scorer' }
View.EncodeValueDict (view)

returns...

"scorer tutor"

For more methods see Enumeration

The QTI specification lists valueType as a basic data type. In pyslet this is implemented as a core part of the processing
model. See pyslet.qgtiv2.variables.Value for details.

3.3.11 Meta-data and Usage Data
class pyslet.qtiv2.metadata.QTIMetadata (parent)
Bases: pyslet.qtiv2.core.QTIElement

A new category of meta-data for the recording of QTI specific information. It is designed to be treated as an
additional top-level category to augment the LOM profile:

3.3. IMS Question and Test Interoperability (version 2.1) 89

Pyslet Documentation, Release 0.6.20160201

<xsd:group name="gtiMetadata.ContentGroup">
<xsd:sequence>
<xsd:element ref="itemTemplate" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="timeDependent"”" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="composite" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="interactionType" minOccurs="0" maxOccurs="unbound
<xsd:element ref="feedbackType" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="solutionAvailable" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="toolName" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="toolVersion" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="toolVendor" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
</xsd:group>

3.4 IMS Basic Learning Tools Interoperability (version 1.0)

The IMS Basic Learning Tools Interoperability (BLTI) specification was released in 2010. The purpose of the spec-
ification is to provide a link between tool consumers (such as Learning Management Systems and portals) and Tools
(such as specialist assessment management systems). Official information about the specification is available from the
IMS GLC under the general name LTI:

This module implements the Basic LTI specification documented in the Best Practice Guide

This module requires the oauthlib module to be installed. The oauthlib module is available from PyPi. This module is
written from the point of view of the Tool Provider. There are a number of pre-defined classes to help you implement
LTI in your own Python applications.

3.4.1 Classes

The ToolProviderApp class is a mini-web framework in itself which makes writing LTI tools much easier. The
framework does not include a page templating language but it should be easy to integrate with your templating system
of choice.

Instances of ToolProviderApp are callable objects that support the WSGI protocol for ease of integration into a wide
variety of deployment scenarios.

The base class implementation takes care of many aspects of your LTI tool:
1. Application settings are read from a JSON-encoded settings file.

2. Data storage is configured using one of the concrete implementations of Pyslet’s own data access layer APL. No
SQL necessary in your code, minimising the risk of SQL injection vulnerabilities!

3. Session handling: the base class handles the setting of a session cookie and an initial set of redirects to ensure
that cookies are being supported properly by the browser. If session handling is broken a fail page method
is called. The session logic contains special measures to prevent common session-related attacks (such as
session fixation, hijacking and cross-site request forgery) and the redirection sequence is designed to overcome
limitaions imposed by broswer restrictions on third party cookies or P3P-related policy issues by providing a
user-actionable flow, opening your tool in a new window if necessary. End user messages are customisable.

4. Launch authorisation is handled automatically, launch requests are checked using OAuth for validity and rejected
automatically if invalid. Successful requests are automatically redirected to a resource-specific page.

5. Each resource is given its own path in your application of the form /<script.wsgi>/resource/<id>/ al-
lowing you to spread your tool application across multiple pages if necessary. A special method,
ToolProviderApp.load _visit (), is provided to extract the resource ID from the URL path and load

920 Chapter 3. IMS Global Learning Consortium Specifications

ed" />

http://www.imsglobal.org/lti/
http://www.imsglobal.org/lti/blti/bltiv1p0/ltiBLTIimgv1p0.html
https://pypi.python.org/pypi/oauthlib

Pyslet Documentation, Release 0.6.20160201

the corresponding entity from the data store. This method also loads the related entities for the the context, user
and visit entities from the session according to the parameters passed in the original launch.

6. An overridable tool permission model is provided with a default implementation that provides
read/write/configure permissions to Instructors (and sub-roles) and read permissions to Learners (and sub-roles).
This enables your tool to simply test a permission bit at runtime to determine whether or not to display certain
page elements.

7. Tools can be launched multiple times in the same browser session. Authorisations remain active allowing the
user to interact with your tool in separate tabs or even in multiple iframes on the same page. Authorisations are
automatically expired if a conflicting launch request is received. In other words, if a browser session receives a
new launch from the same consumer but for a different user then all the previous user’s activity is automatically
logged out.

8. Consumer secrets can be encrypted when persisted in the data store using an application key. By default the
application key is configured in the settings file. (The PyCrypto module is required for encryption.)

The ToolConsumer and ToolProvider classes are largely for internal use. You may want to use them if you
are integrating the basic LTI functionality into a different web framework, they contain utility methods for reading
information from the data store. You would use the ToolProvider. launch () method in your application when
the user POSTs to your launch endpoint to check that the LTI launch has been authorised.

3.4.2 The Data Model

Implementing LTI requires some data storage to persist information between HTTP requests. This module is written
using Pyslet’s own data access layer, based on the concepts of OData. For more information see The Open Data
Protocol (OData).

A sample metadata file describing the required elements of the model is available as part of Pyslet itself. The entity
sets (cf SQL Tables) it describes are as follows:

AppKeys This entity set is used to store information about encryption keys used to encrypt the consumer secrets in
the data store. For more information see pyslet.wsgi.WSGIDataApp

Silos This entity set is the root of the information space for each tool. LTI tools tend to be multi-tenanted, that is,
the same tool application can be used by multiple consumers with complete isolation between each consumer’s
data. The Silo provides this level of protection. Normally, each Silo will link to a single consumer but there may
be cases where two or more consumers should share some data, in these cases a single Silo may link to multiple
consumers.

Consumers This entity set contains information about the tool consumers. Each consumer is identified by a consumer
key and access is protected using a consumer secret (which can be stored in an encrypted form in the data store).

Nonces LTI tools are launched from the consumer using OAuth. The protocol requires the use of a nonce (number
used once only) to prevent the launch request being ‘replayed’ by an unauthorised person. This entity set is used
to record which nonces have been used and when.

Resources The primary launch concept in LTI is the resource. Every launch must have a resource_link_id which
identifies the specific ‘place’ or ‘page’ in which the tool has been placed.

Contexts LTI defines a context as an optional course or group-like organisation that provides context for a launch
request. The context provides another potential scope for sharing data across launches.

Users An LTI launch is typically identifed with a specific user of the Tool Consumer (though this isn’t required).
Information about the users is recorded in the data store so that they can be associated with any data generated
by the tool using simple extensions to the data model.

Visits Each time someone launches your tool a visit entity is created with information about the resource, the context
and the user.

3.4. IMS Basic Learning Tools Interoperability (version 1.0) 91

Pyslet Documentation, Release 0.6.20160201

Sessions Used to store information about the browser session, see pyslet.wsgi.SessionApp for details. The
basic session entity is extended to link to the visits that are active (i.e., currently authorised) for this session.

These entities are related using navigation properties enabling you to determine, for example, which Consumer a
Resource belongs to, which Visits are active in a Session, and so on.

You can extend the core model by adding additional data properties (which should be nullable) or by adding optional
navigation properties. For example, you might create an entity set to store information created by users of the tool
and add a navigation property from the User entity to your new entity to indicate ownership. The sample Noticeboard
application uses this technique and can be used as a guide.

Hello LTI

Writing your first LTI tool is easy:

from optparse import OptionParser
import pyslet.imsbltivlp0 as 1lti

if _ name_ == '__ _main__ ':
parser = OptionParser ()
1ti.ToolProviderApp.add_options (parser)
(options, args) = parser.parse_args ()
1ti.ToolProviderApp.setup (options, args)
app = lti.ToolProviderApp ()
app.run_server ()

Save this script as mytool.py and run it from the command line like this:

$ python mytool.py —--help

Built-in to the WSGI base classes is support for running your tool from the command line during development. The
script above just uses Python’s builtin options parsing feature to set up the tool class before creating an instance (the
WSGI callable object) and running a basic WSGI server using Python’s builtin wsgiref module.

Try running your application with the -m and —create_silo options to use an in-memory SQLite data store and a default
consumer.

$ python mytool.py -m

The script may print a warning message to the console warning you that the in-memory database does not support
multiple connections, it then just sits waiting for connections on the default port, 8080. The default consumer has key
‘12345’ and secret ‘secret’ (these can be changed using a configuration file!). The launch URL for your running tool
is:

http://localhost:8080/1launch

If you try it in the IMS test consumer at: http://www.imsglobal.org/developers/LT1/test/v1p1/lms.php you should get
something that looks a bit like this:

Press to Launch toggle debuq data

Weekly Blog

Congratulations Jane Q. Public, you've launched an LTI tool created with Pyslet.

92 Chapter 3. IMS Global Learning Consortium Specifications

http://www.imsglobal.org/developers/LTI/test/v1p1/lms.php

Pyslet Documentation, Release 0.6.20160201

For a more complete example see the NoticeBoard Sample LTI Tool.

3.4.3 Reference

class pyslet.imsbltivlp0O.ToolProviderApp (**kwargs)
Bases: pyslet.wsgi.SessionApp

Represents WSGI applications that provide LTI Tools

The key ‘ToolProviderApp’ is reserved for settings defined by this class in the settings file. The defined settings
are:

silo (‘testing’) The name of a default silo to create when the —create_silo option is used.
key (‘12345°) The default consumer key created when —create_silo is used.
secret (‘secret’) The consumer secret of the default consumer created when —create_silo is used.

ContextClass
We have our own context class

alias of ToolProviderContext

SessionClass
We have our own LTI-specific Session class

alias of ToolProviderSession

classmethod add_options (parser)
Adds the following options:

--create_silo create default silo and consumer

init_dispatcher ()
Provides ToolProviderApp specific bindings.

This method adds bindings for /launch as the launch URL for the tool and all paths within /resource as the
resource pages themselves.

set_launch_group (context)
Sets the group in the context from the launch parameters

set_launch_resource (context)
Sets the resource in the context from the launch parameters

set_launch_user (context)
Sets the user in the context from the launch parameters

set_launch_permissions (context)
Sets the permissions in the context from the launch params

READ_PERMISSION=1
Permission bit mask representing ‘read’ permission

WRITE_PERMISSION =2
Permission bit mask representing ‘write’ permission

CONFIGURE_PERMISSION =4
Permission bit mask representing ‘configure’ permission

classmethod get_permissions (role)
Returns the permissions that apply to a single role

role A single URN instance

3.4. IMS Basic Learning Tools Interoperability (version 1.0) 93

Pyslet Documentation, Release 0.6.20160201

Specific LTI tools can override this method to provide more complex permission models. Each permission
type is represented by an integer bit mask, permissions can be combined with binary or ‘I’ to make an overal
permissions integer. The default implementation uses the READ_PERMISSION, WRITE_PERMISSION
and CONFIGURE_PERMISSION bit masks but you are free to use any values you wish.

In this implementation, Instructors (and all sub-roles) are granted read, write and configure whereas Learn-
ers (and all subroles) are granted read only. Any other role returns 0 (no permissions).

An LTI consumer can specify multiple roles on launch, this method is called for each role and the resulting
permissions integers are combined to provide an overall permissions integer.

get_user_display_name (context, user=None)
Given a user entity, returns a display name

If user is None then the user from the context is used instead.

get_resource_title (context)
Given a resource entity, returns a display title

new_visit (context)
Called during launch to create a new visit entity

The visit entity is bound to the resource entity referred to in the launch and stores the permissions and a
link to the (optional) user entity.

load_visit (context)
Loads an existing LTT visit into the context

You’ll normally call this method from each session decorated method of your tool provider that applies to
a protected resource.

This method sets the following attributes of the context...

ToolProviderContext.resource The resource record is identified from the resource id given in
the URL path.

ToolProviderContext.visit The session is searched for a visit record matching the resource.
ToolProviderContext.permissions Set from the visit record
ToolProviderContext .user The optional user is loaded from the visit.

ToolProviderContext.group The context record identified from the resource id given in the URL
path. This may be None if the resource link was not created in any context.

ToolProviderContext.consumer The consumer object is looked up from the visit entity.

If the wvisit can’t be set then an exception is raised, an unknown resource raises
pyslet.wsqgi.PageNotFound whereas the absence of a valid visit for a known resource raises
pyslet.wsgi.PageNotAuthorized. These are caught automatically by the WSGI handlers and
return 404 and 403 errors respectively.

launch_redirect (context)
Redirects to the resource identified on launch

A POST request should pretty much always redirect to a GET page and our tool launches are no different.
This allows you to reload a tool page straight away if desired without the risk of double-POST issues.

class pyslet.imsbltivlp0.ToolProviderSession (entity)

Bases: pyslet.wsqgi.Session

add_visit (consumer, visit)
Adds a visit entity to this session

94

Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

This method creates a link from the current session entity to the visit entity. If the session entity already
exists then the existing collection of linked visits is examined.

If a visit to the same resource is already associated with the entity is replaced. This ensures that information
about the resource, the user, roles and permissions always corresponds to the most recent launch.

Any visits from the same consumer but with a different user are also removed. This handles the case where
a previous user of the browser session needs to be logged out of the tool.

find visit (resource_id)
Finds a visit that matches this resource_id

class pyslet.imsbltivlp0.ToolProviderContext (environ, start_response)
Bases: pyslet.wsqgi.SessionContext

consumer = None
a ToolConsumer instance identified from the launch

parameters = None
a dictionary of non-oauth parameters from the launch

visit = None
the effective visit entity

resource = None
the effective resource entity

user = None
the effective user entity

group = None
the effective group (context) entity

permissions = None
the effective permissions (an integer for bitwise testing)

class pyslet.imsbltivlp0.ToolConsumer (entity, cipher)
Bases: object

An LTI consumer object
entity An Ent ity instance.
cipher An AppCipher instance.

This class is a light wrapper for the entity object that is used to persist information on the server about the
consumer. The consumer is persisted in a data store using a single entity passed on construction which must
have the following required properties:

ID: Int64 A database key for the consumer.

Handle: String A convenient handle for referring to this consumer in the user interface of the silo’s owner.
This handle is never exposed to users launching the tool through the LTI protocol. For example, you might
use handles like “LMS Prod” and “LMS Staging” as handles to help distinguish different consumers.

Key: String The consumer key
Secret: String The consumer secret (encrypted using cipher).
Silo: Entity Required navigation property to the Silo this consumer is associated with.

Contexts: Entity Collection Navigation property to the associated contexts from which this tool has been
launched.

3.4. IMS Basic Learning Tools Interoperability (version 1.0) 95

Pyslet Documentation, Release 0.6.20160201

Resources: Entity Collection Navigation property to the associated resources from which this tool has been
launched.

Users: Entity Collection Navigation property to the associated users that have launched the tool.

entity = None
the entity that persists this consumer

cipher = None
the cipher used to

key = None
the consumer key

secret = None
the consumer secret

classmethod new_from_values (entity, cipher, handle, key=None, secret=None)
Create an instance from an new entity

entity An Ent ity instance from a suitable entity set.

cipher An AppCipher instance, used to encrypt the secret before storing it.
handle A string

key (optional) A string, defaults to a string generated with generate key ()
secret (optional) A string, defaults to a string generated with generate _key ()

The fields of the entity are set from the passed in parameters (or the defaults) and then a new instance of
cls is constructed from the entity and cipher and returned as a the result.

update_from_values (handle, secret)
Updates an instance from new values

handle A string used to update the consumer’s handle
secret A string used to update the consumer’s secret
It is not possible to update the consumer key as this is used to set the ID of the consumer itself.

nonce_key (nonce)
Returns a key into the nonce table

nonce A string received as a nonce during an LTI launch.

This method hashes the nonce, along with the consumer entity’s ID, to return a hex digest string that can
be used as a key for comparing against the nonces used in previous launches.

Mixing the consumer entity’s ID into the hash reduces the chance of a collision between two nonces from
separate consumers.

get_context (context_id, title=None, label=None, ctypes=None)
Returns a context entity

context_id The context_id string passed on launch
title (optional) The title string passed on launch
label (optional) The label string passed on launch

ctypes (optional) An array of URT instances representing the context types of this context. See
CONTEXT _TYPE_HANDLES for more information.

96

Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

Returns the context entity.

If this context has never been seen before then a new entity is created and bound to the consumer. Other-
wise, the additional information (if supplied) is compared and updated as necessary.

get_resource (resource_link_id, title=None, description=None, context=None)
Returns a resource entity

resource_link_id The resource_link_id string passed on launch (required).
title (optional) The title string passed on launch, or None.

description (optional) The description string passed on launch, or None.
context (optional) The context entity referred to in the launch, or None.

If this resource has never been seen before then a new entity is created and bound to the consumer and
(if specified) the context. Otherwise, the additional information (if supplied) is compared and updated as
necessary, with the proviso that a resource can never change context, as per the following quote from the
specification:

[resource_link_id] will also change if the item is exported from one system or context and im-
ported into another system or context.

get_user (user_id, name_given=None, name_family=None, name_full=None, email=None)
Returns a user entity

user_id The user_id string passed on launch
name_given The user’s given name (or None)
name_family The user’s family name (or None)
name_full The user’s full name (or None)
email The user’s email (or None)

If this user has never been seen before then a new entity is created and bound to the consumer, otherwise
the

class pyslet.imsbltivlp0.ToolProvider (consumers, nonces, cipher)
Bases: pyslet.imsbltivlp0O.0AuthMissing

An LTI tool provider object

consumers The EntitySet containing the tool Consumers.

nonces The EntitySet containing the used Nonces.

cipher An AppCipher instance. Used to decrypt the consumer secret from the database.

Implements the RequestValidator object required by the oauthlib package. Internally creates an instance of
SignatureOnlyEndpoint

consumers = None
The entity set containing Silos

nonces = None
The entity set containing Nonces

cipher = None
The cipher object used for encrypting consumer secrets

lookup_consumer (key)
Implements the required method for consumer lookup

Returns a ToolConsumer instance or raises a KeyError if key is not the key of any known consumer.

3.4. IMS Basic Learning Tools Interoperability (version 1.0) 97

Pyslet Documentation, Release 0.6.20160201

launch (command, url, headers, body_string)
Checks a launch request for authorization

command The HTTP method, as an upper-case string. Should be POST for LTT.

url The full URL of the page requested as part of the launch. This will be the launch URL specified in the
LTI protocol and configured in the consumer.

headers A dictionary of headers, must include the Authorization header but other values are ignored.
body_string The query string (in the LTI case, this is the content of the POST request).

Returns a ToolConsumer instance and a dictionary of parameters on success. If the incoming request is
not authorized then LTTAuthenticationError is raised.

This method also checks the LTI message type and protocol version and will raise LTIProtcolError
if this is not a recognized launch request.

Metadata
pyslet.imsbltivlp0.load metadata ()
Loads the default metadata document

Returns a pyslet.odataZ.metadata.Document instance. The schema is loaded from a bundled meta-
data document which contains the minimum schema required for an LTI tool provider.

Constants and Data
pyslet.imsbltivlp0.LTI_VERSION = ‘LTI-1p0’
The version of LTI we support

pyslet.imsbltivlp0.LTI_MESSAGE_TYPE = ‘basic-lti-launch-request’
The message type we support

pyslet.imsbltivlp0O.SYSROLE_HANDLES = {‘Administrator’: <pyslet.urn.URN object at 0x7ff24991d750>, ‘Creator’: <|
A mapping from a system role handle to the full URN for the role as a URT instance.

pyslet.imsbltivlip0O.INSTROLE_HANDLES = {‘None’: <pyslet.urn.URN object at 0x7ff24991db10>, ‘Guest’: <pyslet.urn.
A mapping from a institution role handle to the full URN for the role as a URT instance.

pyslet.imsbltivlp0O.ROLE_HANDLES = {‘Manager/CourseCoordinator’: <pyslet.urn.URN object at 0x7ff24992a090>, ‘M
A mapping from LTI role handles to the full URN for the role as a URT instance.

pyslet.imsbltivlpO.split_role (role)
Splits an LTI role into vocab, type and sub-type

role A URN instance containing the full definition of the role.

Returns a triple of:

vocab One of ‘role’, ‘sysrole’, ‘instrole’ or some future vocab extension.

rtype The role type, e.g., ‘Learner’, ‘Instructor’

rsubtype The role sub-type , e.g., ‘NonCreditLearner’, ‘Lecturer’. Will be None if there is no sub-type.

If this is not an LTI defined role, or the role descriptor does not start with the path ims/lis then ValueError is
raised.

pyslet.imsbltivlp0.is_subrole (role, parent_role)
True if role is a sub-role of parent_role

role A URN instance containing the full definition of the role to be tested.

98 Chapter 3. IMS Global Learning Consortium Specifications

Pyslet Documentation, Release 0.6.20160201

parent_role A URN instance containing the full definition of the parent role. It must not define a subrole of
ValueError is raised.

In the special case that role does not have subrole then it is simply matched against parent_role. This ensures
that:

is_subrole(role, ROLE_HANDLES['Learner'])

will return True in all cases where role is a Learner role.

pyslet.imsbltivlpO.CONTEXT_ TYPE_HANDLES = {‘CourseSection’: <pyslet.urn.URN object at 0x7ff24992a910>, ‘Cour
A mapping from LTI context type handles to the full URN for the context type as a URT instance.

Exceptions

class pyslet.imsbltivlpO.LTIError
Bases: exceptions.Exception
Base class for all LTI errors

class pyslet.imsbltivlp0.LTIAuthenticationError
Bases: pyslet.imsbltivip0.LTIError

Indicates an authentication error (on launch)

class pyslet.imsbltivlp0.LTIProtocolError
Bases: pyslet.imsbltivip0.LTIError

Indicates a protocol violoation

This may be raised if the message type or protocol version in a launch request do not match the expected values
or if a required parameter is missing.

Legacy Classes

Earlier Pyslet versions contained a very rudimentary memory based LTI tool provider implementation based on the
older oauth module. These classes have been superceded but the main BLTIToolProvider class has been refactored
as a derived class of ToolProvider using a SQLite “:memory:’ database (instead of a Python dictionary) and the
existing method signatures should continue to work as before.

The only change you’ll need to make is to install the newer oauthlib. Bear in mind that these classes are now deprecated
and you should refactor to use the base ToolProvider class directly for future compatibility. Please raise an issue
on GitHub if you anticipate problems.

class pyslet.imsbltivlp0.BLTIToolProvider
Bases: pyslet.imsbltivip0.ToolProvider

Legacy class for tool provider.

Refactored to build directly on the newer ToolProvider. A single Silo entity is created containing all
defined consumers. An in-memory SQLite database is used as the data store. Consumer keys are not encrypted
(a plaintext cipher is used) as they will not be persisted.

generate_key (key_length=128)
Generates a new key

Also available as GenerateKey. This method is deprecated, it has been replaced by the similarly named
function pyslet.wsgi.generate key ().

key_length The minimum key length in bits. Defaults to 128.

3.4. IMS Basic Learning Tools Interoperability (version 1.0) 99

https://pypi.python.org/pypi/oauthlib

Pyslet Documentation, Release 0.6.20160201

[}

The key is returned as a sequence of 16 bit hexadecimal strings separated by ‘. to make them easier to
read and transcribe into other systems.

new_consumer (key=None, secret=None)
Creates a new BLTIConsumer instance

Also available as NewConsumer

The new instance is added to the database of consumers authorized to use this tool. The consumer key and
secret are automatically generated using generate_key () but key and secret can be passed as optional
arguments instead.

load_from_file (f)
Loads the list of trusted consumers

Also available as LoadFromFile

The consumers are loaded from a simple file of key, secret pairs formatted as:

<consumer key> [SPACE]+ <consumer secret>

Lines starting with a ‘#” are ignored as comments.

save_to_file (f)
Saves the list of trusted consumers

Also available as SaveToFile

The consumers are saved in a simple file suitable for reading with 1oad_from file ().

100 Chapter 3. IMS Global Learning Consortium Specifications

CHAPTER 4

The Open Data Protocol (OData)

This sub-package defines functions and classes for working with OData, a data access protocol based on Atom and
Atom Pub: http://www.odata.org/

This sub-package only deals with version 2 of the protocol at the moment.

OData is not an essential part of supporting the Standards for Learning, Education and Training (SLET) that gives
pyslet its name, though I have actively promoted its use in these communities. As technical standards move towards
using REST-ful web services it makes sense to converge around some common patterns for common use cases. Many
of the protocols now being worked on are much more like basic data-access layers spread over the web between two
co-operating systems. HTTP on its own is often good enough for these applications but when the data lends itself to
tabular representations I think the OData standard is the best protocol available.

The purpose of this group of modules is to make is easy to use the conventions of the OData protocol as a general
purpose data-access layer (DAL) for Python applications. To get started, look at the Data Consumers section which
gives a high-level overview of the API with examples that use Microsoft’s Northwind data-service.

If you are interested in writing an OData provider, or you simply want to use these classes to implement a data access
layer for your own application then look in OData Providers.

4.1 Data Consumers

Warning: the OData client doesn’t support certificate validation when accessing servers through https URLs. This
feature is coming soon...

4.1.1 Introduction

Let’s start with a simple illustration of how to consume data using the DAL API by walking through the use of the
OData client.

The client implementation uses Python’s logging module to provide logging, when learning about the client it may
help to turn logging up to “INFO” as it makes it clearer what the client is doing. “DEBUG” would show exactly what
is passing over the wire.:

>>> import logging
>>> logging.basicConfig(level=logging.INFO)

To create a new client simply instantiate a Client object. You can pass the URL of the service root you wish to connect
to directly to the constructor which will then call the service to download the list of feeds and the metadata document
from which it will set the Client .model.

101

http://www.odata.org/

Pyslet Documentation, Release 0.6.20160201

>>> from pyslet.odata2.client import Client

>>> ¢ = Client ("http://services.odata.org/V2/Northwind/Northwind.svc/")
INFO:root:Sending request to services.odata.org

INFO:root:GET /V2/Northwind/Northwind.svc/ HTTP/1.1

INFO:root:Finished Response, status 200

INFO:root:Sending request to services.odata.org

INFO:root:GET /V2/Northwind/Northwind.svc/$metadata HTTP/1.1
INFO:root:Finished Response, status 200

>>>

The Client . feeds attribute is a dictionary mapping the exposed feeds (by name) onto EntitySet instances.
This makes it easy to open the feeds as EDM collections. In your code you’d typically use the with statement when
opening the collection but for clarity we’ll continue on the python command line:

>>> products = c.feeds['Products'].OpenCollection()
>>> for p in products: print p

INFO:root:Sending request to services.odata.org
INFO:root:GET /V2/Northwind/Northwind.svc/Products HTTP/1.1
INFO:root:Finished Response, status 200
1
2
3
[and so on]
20
INFO:root:Sending request to services.odata.org
INFO:root:GET /V2/Northwind/Northwind.svc/Products?$skiptoken=20 HTTP/1.1
INFO:root:Finished Response, status 200
21
22
23
[and so on]
76
77
>>>

Note that products behaves like a dictionary, iterating through it iterates through the keys in the dictionary. In this
case these are the keys of the entities in the collection of products. Notice that the client logs several requests to the
server interspersed with the printed output. Subsequent requests use $skiptoken because the server is limiting the
maximum page size. These calls are made as you iterate through the collection allowing you to iterate through very
large collections.

The keys alone are of limited interest, let’s try a similar loop but this time we’ll print the product names as well:

>>> for k, p in products.iteritems(): print k, p['ProductName'].value

INFO:root:Sending request to services.odata.org
INFO:root:GET /V2/Northwind/Northwind.svc/Products HTTP/1.1
INFO:root:Finished Response, status 200

1 Chai

2 Chang

3 Aniseed Syrup

20 Sir Rodney's Marmalade
INFO:root:Sending request to services.odata.org
INFO:root:GET /V2/Northwind/Northwind.svc/Products?$skiptoken=20 HTTP/1.1

102 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

INFO:root:Finished Response, status 200
21 Sir Rodney's Scones

22 Gustaf's Kndckebrdd

23 Tunnbrod

76 Lakkalikoodri
77 Original Frankfurter griine SoBe
>>>

Sir Rodney’s Scones sound interesting, we can grab an individual record in the usual way:

>>> scones = products[21]

INFO:root:Sending request to services.odata.org

INFO:root :GET /V2/Northwind/Northwind.svc/Products (21) HTTP/1.1
INFO:root:Finished Response, status 200

>>> for k, v in scones.data_items(): print k, v.value

ProductID 21

ProductName Sir Rodney's Scones
SupplierID 8

CategoryID 3

QuantityPerUnit 24 pkgs. x 4 pieces
UnitPrice 10.0000

UnitsInStock 3

UnitsOnOrder 40

ReorderLevel 5

Discontinued False

>>>

Well, I’'ve simply got to have some of these, let’s use one of the navigation properties to load information about the
supplier:

>>> supplier = scones|['Supplier'].GetEntity ()

INFO:root:Sending request to services.odata.org

INFO:root:GET /V2/Northwind/Northwind.svc/Products (21)/Supplier HTTP/1.1
INFO:root:Finished Response, status 200

>>> for k, v in supplier.data_items(): print k, v.value

SupplierID 8

CompanyName Specialty Biscuits, Ltd.
ContactName Peter Wilson
ContactTitle Sales Representative
Address 29 King's Way

City Manchester

Region None

PostalCode M14 GSD

Country UK

Phone (161) 555-4448

Fax None

HomePage None

Attempting to load a non existent entity results in a KeyError of course:

>>> p = products([211]

INFO:root:Sending request to services.odata.org

INFO:root :GET /V2/Northwind/Northwind.svc/Products (211) HTTP/1.1
INFO:root:Finished Response, status 404

Traceback (most recent call last):

4.1. Data Consumers 103

Pyslet Documentation, Release 0.6.20160201

File "<stdin>", line 1, in <module>
File "/Library/Python/2.7/site-packages/pyslet/odata2/client.py", line 165, in __getif
raise KeyError (key)
KeyError: 211

Finally, when we’re done, it is a good idea to close the open collection:

‘>>> products.close ()

4.1.2 The Data Access Layer in Depth

In the introduction we created an OData Client object using a URL, but in general the way you connect to a data
service will vary depending on the implementation. The Client class itself isn’t actually part of the DAL API itself.

The API starts with a model of the data service. The model is typically parsed from an XML file. For the OData
client the XML file is obtained from the service’s $metadata URL. Here’s an extract from the Northwind $metadata
file showing the definition of the data service, I've removed the XML namespace definitions for brevity:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<edmx:Edmx Version="1.0">
<edmx:DataServices m:DataServiceVersion="1.0">
<Schema Namespace="NorthwindModel">
<EntityType Name="Category">
<!-- rest of the definitions go here... -—>

Each element is represented by an object in Pyslet, the starting point for the API is the DataServices object. A
DataServices object can contain multiple Schema elements, which in turn can contain multiple Ent it yContainer
elements which in turn can contain multiple Ent it ySet elements. The following diagram illustrates these relation-
ships and compares them with approximate equivalent concepts in a typical SQL-scenario.

In the OData client example we used a short-cut to get to the EntitySet objects we were interested in by using the feeds
property of the client itself. However, we could have used the model directly as follows, continuing with the same
session:

>>> c.model

<pyslet.odata2.metadata.Edmx object at 0x10140a9d0>

>>> c.model.DataServices
<pyslet.odata2.metadata.DataServices object at 0x107f£db990>
>>> for s in c.model.DataServices.Schema: print s.name

NorthwindModel

ODataWeb.Northwind.Model

>>> c.model.DataServices|['ODataWeb.Northwind.Model"']
<pyslet.odata2.csdl.Schema object at 0x10800cd90>

>>> c.model.DataServices|['ODataWeb.Northwind.Model"'] ['NorthwindEntities']
<pyslet.odata2.metadata.EntityContainer object at 0x10800cdd0>
>>> c.model.DataServices['ODataWeb.Northwind.Model'] ['NorthwindEntities']['Products']

<pyslet.odata2.metadata.EntitySet object at 0x10800£150>

104 Chapter 4. The Open Data Protocol (OData)

em

Pyslet Documentation, Release 0.6.20160201

>>> c.feeds['Products']
<pyslet.odata2.metadata.EntitySet object at 0x10800£150>

As you can see, the same EntitySet object can be obtained by looking it up in the parent container which behaves like
a dictionary, this in turn can be looked up in the parent Schema which in turn can be looked up in the DataServices
enclosing object. Elements of the model also support deep references using dot-concatenation of names which makes
the code easier to read:

>>> print c.model.DataServices|['ODataWeb.Northwind.Model'] ['NorthwindEntities'] ['Product
ODataWeb.Northwind.Model .NorthwindEntities.Products

>>> c.model.DataServices|['ODataWeb.Northwind.Model .NorthwindEntities.Products']
<pyslet.odata2.metadata.EntitySet object at 0x10800£150>

When writing an application that would normally use a single database you should pass an EntityCollection object to
it as a data source rather than the DataServices ancestor. It is best not to pass an implementation-specific class like the
OData Client as that will make the application dependent on a particular type of data source.

Entity Sets

The following attributes are useful for consumers of the API (and should be treated as read only)
name The name of the entity set

entityTypeName The name of the entity set’s EntityType

entityType The EntityType object that defines the properties for entities in this set.

keys A list of the names of the keys for this EntitySet. For example:

>>> print products.keys
[u'ProductID']

For entity types with compound keys this list will contain multiple items of course.
The following methods are useful for consumers of the API.

GetFQName () Returns the fully qualified name of the entity set, suitable for looking up the entity set in the enclosing
DataServices object.

get_location () Returnsa pyslet.rfc2396.URI object that represents this entity set:

>>> print products.get_location()
http://services.odata.org/V2/Northwind/Northwind.svc/Products

(If there is no base URL available this will be a relative URI.)

OpenCollection () Returnsapyslet.odataZ.csdl.EntityCollection objectthat can be used to ac-
cess the entities in the set.

NavigationTarget () Returns the target entity set of a named navigation property.

NavigationMultiplicity () Returns a tuple of multiplicity constants for the named navigation property. Con-
stants for these values are defined in pyslet.odata2.csdl.Multiplicity, for example:

>>> from pyslet.odata2.csdl import Multiplicity, EncodeMultiplicity

>>> print Multiplicity.ZeroToOne, Multiplicity.One, Multiplicity.Many

012

>>> products.NavigationMultiplicity ('Supplier")

(2, 0)

>>> map (lambda x:EncodeMultiplicity (x),products.NavigationMultiplicity ('Supplier'))
['*', '0..1"]

4.1. Data Consumers 105

s'].GetFQNams

Pyslet Documentation, Release 0.6.20160201

IsEntityCollection () Returns True if the named navigation property points to a collection of entities or a
single entity. In Pyslet, you can treat all navigation properties as collections. In the above example the collection
of Supplier entities obtained by following the ‘Supplier’ navigation property of a Product entity will have at most
1 member.

Entity Collections

To continue with database analogy above, if EntitySets are like SQL Tables EntityCollections are somewhat like the
database cursors that you use to actually read data - the difference is that EntityCollections can only read entities from
a single EntitySet.

An EntityCollection may consume physical resources (like a database connection) and so must be closed with
its close () method when you’re done. They support the context manager protocol to make this easier so you can
use them in with statements to make clean-up easier:

with c.feeds['Products'].OpenCollection() as products:
if 42 in products:
print "Found it!"

The close method is called automatically when the with statement exits.

Entity collections also behave like a python dictionary of Ent it y instances keyed on a value representing the Entity’s
key property or properties. The keys are either single values (as in the above code example) or tuples in the case of
compound keys. The order of the values in the tuple is taken from the order of the PropertyRef definitions in the
model.

There are two ways to obtain an EntityCollection object. You can open an entity set directly or you can open a
collection by navigating from a specific entity through a named navigation property. Although dictionary-like there
are some differences with true dictionaries.

When you have opened a collection from the base entity set the following rules apply:

collection[key] Returns a new Ent ity instance by looking up the key in the collection. As a result, subsequent calls
will return a different object, but with the same key!

collection[key] = new_entity For an existing entity this is essentially a no-operation. This form of assignment cannot
be used to create a new entity in the collection because the act of inserting the entity may alter its key (for
example, when the entity set represents a database table with an auto-generated primary key). See below for
information on how to create and update entities.

del collection[key] In contrast, del will remove an entity from the collection completely.

When an EntityCollection represents a collection of entities obtained by navigation then these rules are updated as
follows:

collection[key] Normally returns a new Ent ity instance by looking up the key in the collection but when the navi-
gation property has been expanded it will return a cached Entity (so subsequent calls will return the same object
without looking up the key in the data source again).

collection[key]=existingEntity Provided that key is the key of existingEntity this will add an existing entity to this
collection, effectively creating a link from the entity you were navigating from to an existing entity.

del collection[key] Removes the entity with key from this collection. The entity is not deleted from its EntitySet, is
merely unlinked from the entity you were navigating from.

The following attribute is useful for consumers of the API (and should be treated as read only)

entity set The EntitySet of this collection. In the case of a collection opened through navigation this is the
base entity set.

106 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

In addition to all the usual dictionary methods like len, itervalues and so on, the following methods are useful for
consumers of the API:

get_location () Returnsa pyslet.rfc2396.URI object that represents this entity collection.
get_title () Returns a user-friendly title to represent this entity collection.

new_entity () Creates a new entity suitable for inserting into this collection. The entity does not exist until it is
inserted with insert_entity.

CopyEntity () Creates a new entity by copying all non-key properties from another entity. The entity does not
exist until it is inserted with insert_entity.

insert_entity () Inserts an entity previously created by new_entity or CopyEntity. When inserting an entity any
active filter is ignored.

Warning: an active filter may result in a paradoxical KeyError:

import pyslet.odata2.core as core
with people.OpenCollection() as collection:
collection.set_filter(
core.CommonExpression. from_str ("startswith (Name, 'D") "))

new_entity = collection.new_entity ()
new_entity['Key'].set_from_value (1)
new_entity['Name'].set_from_value (u"Steve")

collection.insert_entity(new_entity)

new_entity now exists in the base collection but...

el = collection[1]

...raises KeyError as new_entity did not match the filter!

It is recommended that collections used to insert entities are not filtered.

update_entity () Updates an existing entity following changes to the Entity’s values. You can’t update the values
of key properties. To change the key you will need to create a new entity with CopyEntity, insert the new entity
and then remove the old one. Like insert_entity, the current filter is ignored.

set_page () Sets the top and skip values for this collection, equivalent to the $top and $skip options in OData. This
value only affects calls to iterpage. See Paging for more information.

iterpage () lIterates through a subset of the entities returned by itervalues defined by the top and skip values. See
Paging for more information.

set_filter () Sets the filter for this collection, equivalent to the $filter option in OData. Once set this value effects
all future entities returned from the collection (with the exception of new_entity). See Filtering Collections for
more information.

set_orderby () Sets the filter for this collection, equivalent to the $orderby option in OData. Once set this value
effects all future iterations through the collection. See Ordering Collections for more information.

set_expand () Sets expand and select options for this collection, equivalent to the $expand and $select system
query options in OData. Once set these values effect all future entities returned from the collection (with the
exception of new_entity). See Expand and Select for more information.

Paging

Supported from build 0.4.20140215 onwards

The $top/$skip options in OData are a useful way to restrict the amount of data that an OData server returns. The
collection dictionary always behaves as if it contains all entities so the value returned by /en doesn’t change if you set
top and skip values and nor does the set of entities returned by itervalues and similar methods.

4.1. Data Consumers 107

Pyslet Documentation, Release 0.6.20160201

In most cases, the server will impose a reasonable maximum on each request using server-enforced paging. However,
you may wish to set a smaller fop value or simply have more control over the automatic paging implemented by the
default iterators.

To iterate through a single page of entities you’ll start by using the the set__page () method to specify values for top
and, optinally, skip. You must then use the i terpage () method to iterate through the entities in just that page. The
set_next boolean parameter indicates whether or not the next call to iterpage iterates over the same page or the next
page of the collection.

To continue the example above, in which products is an open collection from the Northwind data service:

>>> products.set_page (5,50)
>>> for p in products.iterpage(True): print p.key (), pl['ProductName'].value

INFO:root:Sending request to services.odata.org

INFO:root:GET /V2/Northwind/Northwind.svc/Products?$skip=50&Stop=5 HTTP/1.1
INFO:root:Finished Response, status 200

51 Manjimup Dried Apples

52 Filo Mix

53 Perth Pasties

54 Tourtiere

55 Paté chinois

>>> for p in products.iterpage(True): print p.key (), pl'ProductName'].value

INFO:root:Sending request to services.odata.org

INFO:root:GET /V2/Northwind/Northwind.svc/Products?$skip=55&$top=5 HTTP/1.1
INFO:root:Finished Response, status 200

56 Gnocchi di nonna Alice

57 Ravioli Angelo

58 Escargots de Bourgogne

59 Raclette Courdavault

60 Camembert Pierrot

In some cases, the server will restrict the page size and fewer entities will be returned than expected, in these cases the
skiptoken is used automatically when the next page is requested:

>>> products.set_page (30, 50)
>>> for p in products.iterpage (True): print p.key (), pl['ProductName'].value

INFO:root:Sending request to services.odata.org
INFO:root:GET /V2/Northwind/Northwind.svc/Products?$skip=50&S$top=30 HTTP/1.1
INFO:root:Finished Response, status 200
51 Manjimup Dried Apples
52 Filo Mix
53 Perth Pasties
[and so on]

69 Gudbrandsdalsost
70 Outback Lager
>>> for p in products.iterpage(True): print p.key (), pl['ProductName'].value

INFO:root:Sending request to services.odata.org

INFO:root:GET /V2/Northwind/Northwind.svc/Products?S$top=30&S$skiptoken=70 HTTP/1.1
INFO:root:Finished Response, status 200

71 Flotemysost

72 Mozzarella di Giovanni

73 ROd Kaviar

74 Longlife Tofu

75 Rhonbrdu Klosterbier

108 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

76 Lakkalikoori
77 Original Frankfurter griine SoBe

Filtering Collections

By default, an entity collection contains all items in the entity set or, if the collection was obtained by navigation, all
items linked to the entity by the property being navigated. Filtering a collection (potentially) selects a sub-set of the
these entities based on a filter expression.

Filter expressions are set using the set_filter () method of the collection. Once a filter is set, the dictionary
methods, and iterpage, will only return entities that match the filter.

The easiest way to set a filter is to compile one directly from a string representation using OData’s query language.
For example:

>>> import pyslet.odata2.core as core

>>> filter = core.CommonExpression.from_str ("substringof ('one',ProductName)")
>>> products.set_filter(filter)
>>> for p in products.itervalues(): print p.key (), p['ProductName'].value

INFO:root:Sending request to services.odata.org

INFO:root:GET /V2/Northwind/Northwind.svc/Products?$filter=substringof ('one'%2CProductNa
INFO:root:Finished Response, status 200

21 Sir Rodney's Scones

32 Mascarpone Fabioli

To remove a filter, set the filter expression to None:

>>> products.set_filter (None)

Ordering Collections

Like OData and python dictionaries, this API does not specify a default order in which entities will be returned by the
iterators. However, unlike python dictionaries you can control this order using an orderby option.

OrderBy expressions are set using the set__orderby () method of the collection. Once an order by expression is
set, the dictionary methods, and iterpage, will return entities in the order specified.

The easiest way to define an ordering is to compile one directly from a string representation using OData’s query
language. For example:

>>> ordering=core.CommonExpression.OrderByFromString ("ProductName desc")
>>> products.set_orderby (ordering)
>>> for p in products.itervalues(): print p.key (), p['ProductName'].value

INFO:root:Sending request to services.odata.org
INFO:root:GET /V2/Northwind/Northwind.svc/Products?S$orderby=ProductName%20desc HTTP/1.1
INFO:root:Finished Response, status 200
47 Zaanse koeken
64 Wimmers gute Semmelknddel
63 Vegie-spread
50 Valkoinen suklaa
7 Uncle Bob's Organic Dried Pears
23 Tunnbrod
[and so on]

4.1. Data Consumers 109

me)

HTTP/1.1

Pyslet Documentation, Release 0.6.20160201

56 Gnocchi di nonna Alice
INFO:root:Sending request to services.odata.org
INFO:root :GET /V2/Northwind/Northwind.svc/Products?$orderby=ProductName%20desc&$skiptokg
INFO:root:Finished Response, status 200
15 Genen Shouyu
33 Geitost
71 Flotemysost
[and so on]

40 Boston Crab Meat
3 Aniseed Syrup
17 Alice Mutton

pn="Gnocchi%2(

To remove an ordering, set the orderby expression to None:

>>> products.Orderby (None)

Expand and Select

Expansion and selection are two interrelated concepts in the API. Expansion allows you to follow specified navigation
properties retrieving the entities they link to in the same way that simple and complex property values are retrieved.

Expand options are represented by nested dictionaries of strings. For example, to expand the Supplier navigation
property of Products you would use a dictionary like this:

expansion={'Supplier':None}

The value in the dictionary is either None, indicating no further expansion, or another dictionary specifying the expan-
sion to apply to any linked Suppliers:

>>> products.set_expand({'Supplier':None}, None)

>>> scones = products[21]

INFO:root:Sending request to services.odata.org

INFO:root:GET /V2/Northwind/Northwind.svc/Products (21) ?$expand=Supplier HTTP/1.1
INFO:root:Finished Response, status 200

>>> supplier=scones|['Supplier'].GetEntity ()

>>> for k, v in supplier.data_items(): print k, v.value

SupplierID 8

CompanyName Specialty Biscuits, Ltd.
ContactName Peter Wilson
ContactTitle Sales Representative
Address 29 King's Way

City Manchester

Region None

PostalCode M14 GSD

Country UK

Phone (161) 555-4448

Fax None

HomePage None

A critical point to note is that applying an expansion to a collection means that linked entities are retrieved at the same
time as the entity they are linked to and cached. In the example above, the GetEntity call does not generate a call to
the server. Compare this with the same code executed without the expansion:

>>> products.set_expand (None, None)
>>> scones = products[21]
INFO:root:Sending request to services.odata.org

110 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

INFO:root:GET /V2/Northwind/Northwind.svc/Products (21) HTTP/1.1
INFO:root:Finished Response, status 200

>>> supplier = scones|['Supplier'].GetEntity ()

INFO:root:Sending request to services.odata.org

INFO:root:GET /V2/Northwind/Northwind.svc/Products (21)/Supplier HTTP/1.1
INFO:root:Finished Response, status 200

The select option complements expansion, narrowing down the simple and complex properties that are retrieved from
the data source. You specify a select option in a similar way, using nested dictionaries. Simple and complex properties
must always map to None, for a more complex example with navigation properties see below. Suppose we are only
interested in the product name:

>>> products.set_expand(None, {'ProductName':None})
>>> scones = products[21]
INFO:root:Sending request to services.odata.org

INFO:root:GET /V2/Northwind/Northwind.svc/Products (21) ?$select=ProductID%2CProductName HTTP/1.1

INFO:root:Finished Response, status 200
>>> for k, v in scones.data_items(): print k, v.value

ProductID 21

ProductName Sir Rodney's Scones
SupplierID None

CategoryID None

QuantityPerUnit None

UnitPrice None

UnitsInStock None

UnitsOnOrder None

ReorderLevel None

Discontinued None

In Pyslet, the values of the key properties are always retrieved, even if they are not selected. This is required to maintain
the dictionary-like behaviour of the collection. An entity retrieved this way has NULL values for any properties that
weren’t retrieved. The Selected () method allows you to determine if a value is NULL in the data source or NULL
because it is not selected:

>>> for k, v in scones.data_items{() :
if scones.Selected(k): print k, v.value

ProductID 21
ProductName Sir Rodney's Scones

The expand and select options can be combined in complex ways:

>>> products.set_expand({'Supplier':None}, {'ProductName':None, 'Supplier':{'Phone':None}})

>>> scones = products[21]
INFO:root:Sending request to services.odata.org
INFO:root:GET /V2/Northwind/Northwind.svc/Products (21) ?$Sexpand=Supplier&S$select=Product]
INFO:root:Finished Response, status 200
>>> supplier = scones|['Supplier'].GetEntity ()
>>> for k, v in scones.data_items{() :

if scones.Selected(k): print k, v.value

ProductID 21
ProductName Sir Rodney's Scones
>>> for k, v in supplier.data_items():
if supplier.Selected(k): print k, v.value

SupplierID 8
Phone (161) 555-4448

4.1. Data Consumers 111

D%2CProductN:

Pyslet Documentation, Release 0.6.20160201

Entity Objects

Continuing further with the database analogy and Ent ity is like a single record.

Entity instances behave like a read-only dictionary mapping property names onto their values. The values are either
SimpleValue, Complex or DeferredValue instances. All property values are created on construction and cannot be as-
signed. To update a SimpleValue, whether it is a direct child or part of a Complex value, use its set_ from _value ()
method:

entity['Name'].set_from_value ("Steve")
entity['Address'] ['City'].set_from_value ("Cambridge™)

The following attributes are useful for consumers of the API (and should be treated as read only):
entity_set The EntitysSet to which this entity belongs.
type_def The EntityType which defines this entity’s type.

exists True if this entity exists in the collection, i.e., it was returned by one of the dictionary methods of an entity
collection such as ifervalues or [key] look-up.

The following methods are useful for consumers of the API:
key () Returns the entity’s key, as a single python value or tuple in the case of compound keys

get_location() Returnsapyslet.rfc2396.URI object that represents this entity:

>>> print scones.get_location()
http://services.odata.org/V2/Northwind/Northwind.svc/Products (21)

DataKeys () lterates over the simple and complex property names:

>>> list (scones.DataKeys())
[u'ProductID', u'ProductName', u'SupplierID', u'CategoryID', u'QuantityPerUnit', u'

UnitPrice’,

data_items () Iterates over tuples of simple and complex property (name,value) pairs. See above for examples of
usage.

Selected () Tests if the given data property is selected.

NavigationKeys () lIterates over the navigation property names:

>>> list (scones.NavigationKeys())
[u'Category', u'Order_Details', u'Supplier']

NavigationItems () Iterates over tuples of navigation property (name,DeferredValue) pairs.
IsNavigationProperty () Tests if a navigation property with the given name exists

The following methods can be used only on entities that exists, i.e., entities that have been returned from one of the
collection’s dictionary methods:

commit () Normally you’ll use the the update_entity method of an open EntityCollection but in cases where the
originating collection is no longer open this method can be used as a convenience method for opening the base
collection, updating the entity and then closing the collection collection again.

Delete () Deletes this entity from the base entity set. If you already have the base entity set open it is more efficient
to use the del operator but if the collection is no longer open or the entity was obtained from a collection opened
through navigation then this method can be used to delete the entity.

The following method can only be used on entities that don’t exist, i.e., entities returned from the collection’s
new_entity or CopyEntity methods that have not been inserted.

set_key () Sets the entity’s key

112 Chapter 4. The Open Data Protocol (OData)

U

Pyslet Documentation, Release 0.6.20160201

SimpleValue

Simple property values are represented by (sub-classes of) SimpleValue, they share a number of common methods:

IsNull () Returns True if this value is NULL. This method is also used by Python’s non-zero test so:

if entity|['Property']:
print entity['Property'].value
prints even if value is 0

will print the Property value of entity if it is non-NULL. In particular, it will print empty strings or other
representations of zero. If you want to exclude these from the test you should test the value attribute directly:

if entity['Property'].value:
print entity['Property'].value
will not print if value is 0

set_from value () Updates the value, coercing the argument to the correct type and range checking its value.

SetFromSimpleValue () Updates the value from another SimpleValue, if the types match then the value is sim-
ply copied, otherwise the value is coerced using set_from_value.

SetFromLiteral () Updates the value by parsing it from a (unicode) string. This is the opposite to the unicode
function. The literal form is the form used when serializing the value to XML (but does not include XML
character escaping).

set_null () Updates the value to NULL

The value attribute is always an immutable value in python and so can be used as a key in your own dictionaries. The
following list describes the mapping from the EDM-defined simple types to their corresponding native Python types.

Edm.Boolean: one of the Python constants True or False

Edm.Byte, Edm.SByte, Edm.Int16, Edm.Int32: int

Edm.Int64: long

Edm.Double, Edm.Single: python float

Edm.Decimal: python Decimal instance (from the built-in decimal module)

Edm.DateTime, Edm.DateTimeOffset: py:class:pyslet.iso8601.TimePoint instance
This is a custom object in Pyslet, see Working with Dates for more information.

Edm.Time: py:class:pyslet.iso8601.Time instance

Early versions of the OData specification incorrectly mapped this type to the XML Schema duration. The use
of a Time object to represent it, rather than a duration, reflects this correction.

See Working with Dates for more information.
Edm.Binary: raw string
Edm.String: unicode string

Edm.Guid: Python UUID instance (from the built-in uuid module)

Complex

Complex values behave like dictionaries of data properties. They do not have keys or navigation properties. They are
never NULL, IsNull and the Python non-zero test will always return True.

4.1. Data Consumers 113

Pyslet Documentation, Release 0.6.20160201

set_null () Although a Complex value can never be NULL, this method will set all of its data properties (recur-
sively if necessary) to NULL

DeferredValue

Navigation properties are represented as DeferredValue instances. All deferred values can be treated as an entity
collection and opened in a similar way to an entity set:

>>> sconeSuppliers=scones|'Supplier'].OpenCollection ()
>>> for s in sconeSuppliers.itervalues(): print s['CompanyName'].value

INFO:root:Sending request to services.odata.org

INFO:root:GET /V2/Northwind/Northwind.svc/Products (21)/Supplier HTTP/1.1
INFO:root:Finished Response, status 200

Specialty Biscuits, Ltd.

>>>

For reading, a collection opened from a deferred value behaves in exactly the same way as a collection opened from a
base entity set. However, for writing there are some difference described above in Entity Collections.

If you use the dictionary methods to update the collection the changes are made straight away by accessing the data
source directly. If you want to make a number of changes simultaneously, or you want to link entities to entities that
don’t yet exist, then you should use the BindEntity method described below instead. This method defers the changes
until the parent entity is updated (or inserted, in the case of non-existent entities.)

Read-only attributes useful to data consumers:

name The name of the navigation property

from entity The parent entity of this navigation property

pDef The NavigationProperty that defines this navigation property in the model.
isRequired True if the target of this property has multiplicity 1, i.e., it is required.
isCollection True if the target of this property has multiplicity *

isExpanded True if this navigation property has been expanded. Expanded navigation keep a cached version of the
target collection. Although you can open it and use it in the same way any other collection the values returned
are returned from the cache and not by accessing the data source.

Methods useful to data consumers:

OpenCollection () Returns an pyslet.odataZ.csdl.EntityCollection object that can be used to
access the target entities.

GetEntity () Convenience method that returns the entity that is the target of the link when the target has multi-
plicity 1 or 0..1. If no entity is linked by the association then None is returned.

BindEntity () Marks the target entity for addition to this navigation collection on next update or insert. If this
navigation property is not a collection then the target entity will replace any existing target of the link.

Target () The target entity set of this navigation property.

Working with Dates

In the EDM there are two types of date, DateTime and DateTimeOffset. The first represents a time-point in an implicit
zone and the second represents a time-point with the zone offset explicitly set.

Both types are represented by the custom :py:class:pyslet.iso8601.TimePoint® class in Pyslet.

114 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

time module from build 0.4.20140217 onwards

Interacting with Python’s time module is done using the struct_time type, or lists that have values corresponding to
those in struct_time:

>>> import time

>>> orders = c.feeds['Orders'].OpenCollection()

>>> orders.set_page (5)

>>> top = list (orders.iterpage())

INFO:root:Sending request to services.odata.org

INFO:root:GET /V2/Northwind/Northwind.svc/Orders?$skip=0&$Stop=5 HTTP/1.1
INFO:root:Finished Response, status 200

>>> print top[0]['OrderDate'].value
1996-07-04T00:00:00

>>> t = [Nonel]=*9

>>> top[0] ['OrderDate'] .value.update_struct_time (t)
>>> t

[1996, 7, 4, 0, 0, 0, 3, 186, -1]

>>> time.strftime ("%a, %b %Y SH:%M:%S",t)

'Thu, 04 Jul 1996 00:00:00"

You can set values obtained from the time module in a similar way:

>>> import pyslet.iso8601 as iso

>>> t = time.gmtime (time.time())

>>> top[0] ['OrderDate'] .set_from_value(iso.TimePoint.from_struct_time(t))
>>> print top[0]['OrderDate'].value

2014-02-17T21:51:41

But if you just want a timestamp use one of the built-in factory methods:

>>> top[0] ['OrderDate'].set_from_value (iso.TimePoint.from_now_utc())
>>> print top[0]['OrderDate'].value
2014-02-17T21:56:23

In future versions, look out for better support for datetime and calendar module conversion methods.

Working with Media Resources

OData is based on Atom and the Atom Publishing Protocol (APP) and inherits the concept of media resources and
media link entries from those specifications.

In OData, an entity can be declared as a media link entry indicating that the main purpose of the entity is to hold a
media stream. If the entity with the following URL is a media link entry:

‘http://host/Documents(123)

then the following URL provides access to the associated media resource:

’http://host/Documents(123)/$value

In the DAL this behaviour is modelled by operations on the collection containing the entities. The methods you’ll use
are:

is medialink collection () Returns True if the entities are media link entries
read _stream() Reads information about a stream, optionally copying the stream’s data to a file-like object.

new_stream() Creates a new media resource, copying the stream’s data from a file-like object.

4.1. Data Consumers 115

Pyslet Documentation, Release 0.6.20160201

This method implicitly creates an associated media link entry and returns the resulting Ent ity object. By its
nature, APP does not guarantee the URL that will be used to store a posted resource. The implication for OData
is that you can’t specify the key that will be used for the media resource’s entry, though this method does allow
you to supply a hint.

udpate_stream() Updates a media resource, copying the stream’s new data from a file-like object.

If a collection is a collection of media link entries then the behaviour of
:py:meth:~pyslet.odata2.core.EntityCollection.insert_entity‘ is modified as entities are created implicitly when
a new stream is added to the collection. In this case, insert_entity creates an empty stream of type application/octet-
stream and then merges the property values from the entity being inserted into the new media link entry created for
the stream.

4.2 OData Providers

The approach to writing a data access layer (DAL) taken by Pyslet is to use the Entity Data Model (EDM), and the
extensions defined by OData, and to encapsulate them in an API defined by a set of abstract Python classes. The Data
Consumers section goes through this API from the point of view of the consumer and provides a good primer for
understanding what is required from a provider.

Pyslet includes three derived classes that implement the API in a variety of different storage scenarios:

1. OData Client - an implementation of the DAL that makes calls over the web to an OData server. Defined in the
module pyslet.odatav2.client and used in the examples in the section Data Consumers.

2. In-memory data service - an implementation of the DAL that stores all entities and associations in python
dictionaries. Defined in the module pyslet.odatav2.memds.

3. SQL data service - an implementation of the DAL that maps on to python’s database API. Defined in the
module pyslet.odatav2.sglds. In practice, the classes defined by this module will normally need to
be sub-classed to deal with database-specific issues but a full implementation for SQLite is provided and a
quick look at the source code for that should give you courage to tackle any modifications necessary for your
favourite database. Using this DAL API is much easier than having to do these tweaks when they are distributed
throughout your code in embedded SQL-statements.

A high-level plan for writing an OData provider would therefore be:

0. Identify the underlying DAL class that is most suited to your needs or, if there isn’t one, create a new DAL
implementation using the existing implementations as a guide.

1. Create a metadata document to describe your data model

2. Write a test program that uses the DAL classes directly to validate that your model and the DAL implementation
are working correctly

3. Create pyslet.odata2.server.Server thatis bound to your model test it with an OData client to ensure
that it works as expected.

4. Finally, create a sub-class of the server with any specific customisations needed by your application: mainly
to implement your applications authentication and authorization model. (For a read-only service there may be
nothing to do here.)

Of course, if all you want to do is use these interfaces as a DAL in your own application you can stop at item 3 above.

4.2.1 Sample Project: InMemory Data Service

The sample code for this service is in the samples directory in the Pyslet distribution.

116 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

This project demonstrates how to construct a simple OData service based on the InMemoryEntityContainer
class. We don’t need any customisations, this class does everything we need ‘out of the box’.

Step 1: Creating the Metadata Model
Unlike other frameworks for implementing OData services Pyslet starts with the metadata model, it is not automatically
generated: you must write it yourself'!

Fortunately, there are plenty of examples you can use as a template. In this sample project we’ll write a very simple
memory cache capable of storing a key-value pair. Here’s our data model:

<?xml version="1.0" encoding="utf-8" standalone="yes" 2>
<edmx:Edmx Version="1.0" xmlns:edmx="http://schemas.microsoft.com/ado/2007/06/edmx"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata">
<edmx:DataServices m:DataServiceVersion="2.0">
<Schema Namespace="MemCacheSchema" xmlns="http://schemas.microsoft.com/3
<EntityContainer Name="MemCache" m:IsDefaultEntityContainer="try
<EntitySet Name="KeyValuePairs" EntityType="MemCacheSchsg
</EntityContainer>
<EntityType Name="KeyValuePair">
<Key>
<PropertyRef Name="Key"/>
</Key>
<Property Name="Key" Type="Edm.String" Nullable="false"
Unicode="true" FixedLength="false"/>
<Property Name="Value" Type="Edm.String" Nullable="falsg
Unicode="true" FixedLength="false"/>
<Property Name="Expires" Type="Edm.DateTime" Nullable="f
Precision="3"/>
</EntityType>
</Schema>
</edmx:DataServices>
</edmx : Edmx>

Our model has one defined EntityType called KeyValuePair and one EntitySet called KeyValueFairs in a container
called MemCache. The idea behind the model is that each key-value pair is inserted with an expires time, after which
it is safe to clean it up.

For simplicity, we’ll save this model to a file and load it from the file when our script starts up. Here’s the source code:

import pyslet.odata2.metadata as edmx

def load_metadata():
"""lLoads the metadata file from the current directory."""
doc=edmx .Document ()
with open ('MemCacheSchema.xml', 'rb') as f:
doc.Read (f)
return doc

The metadata module contains a Document object and the definitions of the elements in the edmx namespace that
enable us to read the XML file.

Step 2: Test the Model

Let’s write a simple test function to test our model:

4.2. OData Providers 117

do/2006/04/e
e">
xma . KeyValueP:

MaxLength="2!

" MaxLength=

false"

Pyslet Documentation, Release 0.6.20160201

def TestData (memCache) :
with memCache.OpenCollection() as collection:
for i in xrange(26):
e=collection.new_entity ()
e.set_key(str(i))
e['Value'].set_from value (unichr (0x41+i))
e['Expires'].set_from_value (iso.TimePoint.from_unix_time (time.ti
collection.insert_entity (e)

def test_model () :

"""Read and write some key value pairs"""
doc=load_metadata ()
container=InMemoryEntityContainer (doc.root.DataServices['MemCacheSchema.MemCachg
memCache=doc.root.DataServices|['MemCacheSchema.MemCache.KeyValuePairs']
TestData (memCache)
with memCache.OpenCollection() as collection:

for e in collection.itervalues() :

print " : (expires)"S(e['Key'].value,e['Value'] .value, st1

Our function comes in two parts (for reasons that will become clear later). The first function takes an EntitySet object
and creates 26 key-value pairs with increasing expiry times.

The main function loads the metadata model, creates the InMemoryEntityContainer object, calls the first function to
create the test data and then opens the KeyValuePairs collection itself to check that everything is in order. Here’s the
output from a sample run:

>>> import memcache
>>> memcache.test_model ()

24: Y (expires 2014-02-17T22:26:21)
25: Z (expires 2014-02-17T22:26:31)
20: U (expires 2014-02-17T22:25:41)
21: V (expires 2014-02-17T22:25:51)
22: W (expires 2014-02-17T22:26:01)
23: X (expires 2014-02-17T22:26:11)
1: B (expires 2014-02-17T22:22:31)
0: A (expires 2014-02-17T22:22:21)
3: D (expires 2014-02-17T22:22:51)
2: C (expires 2014-02-17T22:22:41)
5: F (expires 2014-02-17T22:23:11)
4: E (expires 2014-02-17T22:23:01)
7: H (expires 2014-02-17T22:23:31)
6: G (expires 2014-02-17T22:23:21)
9: J (expires 2014-02-17T22:23:51)
8: I (expires 2014-02-17T22:23:41)
11: L (expires 2014-02-17T22:24:11)
10: K (expires 2014-02-17T22:24:01)
13: N (expires 2014-02-17T22:24:31)
12: M (expires 2014-02-17T22:24:21)
15: P (expires 2014-02-17T22:24:51)
14: O (expires 2014-02-17T22:24:41)
17: R (expires 2014-02-17T22:25:11)
16: Q (expires 2014-02-17T22:25:01)
19: T (expires 2014-02-17T22:25:31)
S)

expires 2014-02-17T22:25:21

It is worth pausing briefly here to look at the InMemoryEntityContainer object. When we construct this object we pass
in the EntityContainer and it creates all the necessary storage for the EntitySets (and AssociationSets, if required) that
it contains. It also binds internal implementations of the EntityCollection object to the model so that, in future, the
EntitySet can be opened using the same API described previously in Data Consumers. From this point on we don’t

118 Chapter 4. The Open Data Protocol (OData)

me () +10%1))

(e['"Expires'

Pyslet Documentation, Release 0.6.20160201

need to refer to the container again as we can just open the EntitySet directly from the model. That object is the heart
of our application, blink and you’ve missed it.

Step 4: Link the Data Source to the OData Server

OData runs over HTTP so we need to assign a service root URL for the server to run on. We define a couple of
constants to help with this:

SERVICE_PORT=8080
SERVICE_ROOT="http://localhost: "$SERVICE_PORT

We’re also going to use a separate thread to run the server, a global variable helps here. We’re using Pythons wsgi
interface for the server which requires a callable object to handle requests. The Server object implements callable
behaviour to enable this:

import logging, threading
from wsgiref.simple server import make_server

cacheApp=None #: our Server instance

def runCacheServer () :
"""Starts the web server running"""
server=make_server ('',SERVICE_PORT, cacheApp)
logging.info ("Starting HTTP server on port ..."$SERVICE_PORT)
Respond to requests until process is killed
server.serve_forever ()

The final part of server implementation involves loading the model, creating the server object and then spawning the
server thread:

def main() :
"""Executed when we are launched"""
doc=load_metadata ()
container=InMemoryEntityContainer (doc.root.DataServices|['MemCacheSchema.MemCachg
server=Server (serviceRoot=SERVICE_ROOT)
server.SetModel (doc)
The server 1is now ready to serve forever
global cacheApp
cacheApp=server
t=threading.Thread (target=runCacheServer)
t.setDaemon (True)
t.start ()
logging.info ("MemCache starting HTTP server on "$SERVICE_ROOT)

The Server object just takes the serviceRoot as a parameter on construction and has a SetModel () method which
is used to assign the metadata document to it. That’s all you need to do to create it, it uses the same API described in
Data Consumers to consume the data source and expose it via the OData protocol.

At this stage we can test it via the terminal and a browser:

>>> import memcache
>>> memcache.main ()
>>>

At this point the server is running in a separate thread, listening on port 8080. A quick check from the browser shows
this to be the case, when I hit http://localhost:8080/KeyValuePairs Firefox recognises that the document is an Atom
feed and displays the feed title. The page source shows:

4.2. OData Providers 119

http://localhost:8080/KeyValuePairs

Pyslet Documentation, Release 0.6.20160201

<?xml version="1.0" encoding="UTF-8"7?>

<feed xmlns="http://www.w3.0rg/2005/Atom" xmlns:d="http://schemas.microsoft.com/ado/2007
<id>http://localhost:8080/KeyValuePairs</id>
<title type="text">MemCacheSchema.MemCache.KeyValuePairs</title>
<updated>2014-02-17T22:41:51%</updated>
<link href="http://localhost:8080/KeyValuePairs" rel="self"/>

</feed>

Looks like it is working!

Step 5: Customise the Server

We don’t need to do much to customise our server, we’ll assume that it is only ever going to be exposed to clients we
trust and so authentication is not required or will be handled by some intermediate proxy.

However, we do want to clean up expired entries automatically. Let’s add one last function to our code:

CLEANUP_SLEEP=10

def CleanupForever (memCache) :
"""Runs a loop continuously cleaning up expired items"""
expires=core.PropertyExpression (u"Expires")
now=edm.DateTimeValue ()
t=core.LiteralExpression (now)
filter=core.BinaryExpression (core.Operator.lt)
filter.operands.append (expires)
filter.operands.append (t)
while True:
now.set_from_value (iso.TimePoint.from_now_utc())
logging.info ("Cleanup thread running at ",str(now.value))
with memCache.OpenCollection () as cacheEntries:
cacheEntries.set_filter(filter)
expiredList=1list (cacheEntries)
if expiredList:
logging.info ("Cleaning cache entries", len (expiredList
for expired in expiredList:
del cacheEntries[expired]
cacheEntries.set_filter (None)
logging.info ("Cleanup complete, cache entries remain", len (cadq
time.sleep (CLEANUP_SLEEP)

This function starts by building a filter expression manually. Filter expressions are just simple trees of expression
objects. We start with a PropertyExpression that references a property named Expires and a literal expression with
a date-time value. DateTimeValue is just a sub-class of SimpleValue which was introduced in Data Consumers.
Previously we’ve only seen simple values that are part of an entity but in this case we create a standalone value to use
in the expression. Finally, the filter expression is created as a BinaryExpression using the less than operator and the
operands appended. The resulting expression tree looks like this:

Binary Expression
it

LiteralExpression
DateTimeValue

PropertyExpression
"Expires'

Each time around the loop we can just update the value of the literal expression with the current time.

This function takes an EntitySet as a parameter so we can open it to get the collection and then apply the filter.
Once filtered, all matching cache entries are loaded into a list before being deleted from the collection, one by one.

120 Chapter 4. The Open Data Protocol (OData)

/08/dataserv:

heEntries))

Pyslet Documentation, Release 0.6.20160201

Finally, we remove the filter and report the number of remaining entries before sleeping ready for the next run.

We’ll call this function right after main, so we’ve got one thread running the server and the main thread running the
cleanup loop.

Now we can test, we start by firing up our server application:

$./memcache.py

INFO:root:MemCache starting HTTP server on http://localhost:8080/
INFO:root:Cleanup thread running at 2014-02-17T23:03:34
INFO:root:Cleanup complete, O cache entries remain
INFO:root:Starting HTTP server on port 8080...

INFO:root:Cleanup thread running at 2014-02-17T23:03:44
INFO:root:Cleanup complete, 0 cache entries remain

Unfortunately, we need more than a simple browser to test the application properly. We want to know that the key
value pairs are being created properly and for that we need a client capable of writing to the service. Fortunately,
Pyslet has an OData consumer, so we open the interpreter in a new terminal and start interacting with our server:

>>> from pyslet.odata2.client import Client
>>> c=Client ("http://localhost:8080/")

As soon as we start the client our server registers hits:

INFO:root:Cleanup thread running at 2014-02-17T23:06:34
INFO:root:Cleanup complete, 0 cache entries remain

127.0.0.1 - - [17/Feb/2014 23:06:34] "GET / HTTP/1.1" 200 360

127.0.0.1 - - [17/Feb/2014 23:06:34] "GET /$metadata HTTP/1.1" 200 1040
INFO:root:Cleanup thread running at 2014-02-17T23:06:44
INFO:root:Cleanup complete, 0 cache entries remain

Entering the data manually would be tedious but we already wrote a suitable function for adding test data. Because
both the data source and the OData client adhere to the same API we can simply pass the EntitySet to our TestData
function:

>>> import memcache
>>> memcache.TestData (c.feeds['KeyValuePairs'])

As we do this, the server window goes crazy as each of the POST requests comes through:

INFO:root:Cleanup thread running at 2014-02-17T23:08:14

INFO:root:Cleanup complete, 0 cache entries remain

127.0.0.1 - - [17/Feb/2014 23:08:23] "POST /KeyValuePairs HTTP/1.1" 201 717
[and so on]

127.0.0.1 - - [17/Feb/2014 23:08:24] "POST /KeyValuePairs HTTP/1.1" 201 720
INFO:root:Cleanup thread running at 2014-02-17T23:08:24

INFO:root:Cleaning 1 cache entries

INFO:root:Cleanup complete, 19 cache entries remain

127.0.0.1 - - [17/Feb/2014 23:08:24] "POST /KeyValuePairs HTTP/1.1" 201 720
127.0.0.1 - - [17/Feb/2014 23:08:24] "POST /KeyValuePairs HTTP/1.1" 201 720
127.0.0.1 - - [17/Feb/2014 23:08:24] "POST /KeyValuePairs HTTP/1.1" 201 720
127.0.0.1 - - [17/Feb/2014 23:08:24] "POST /KeyValuePairs HTTP/1.1" 201 720
127.0.0.1 - - [17/Feb/2014 23:08:24] "POST /KeyValuePairs HTTP/1.1" 201 720
127.0.0.1 - - [17/Feb/2014 23:08:24] "POST /KeyValuePairs HTTP/1.1" 201 720

INFO:root:Cleanup thread running at 2014-02-17T23:08:34
INFO:root:Cleaning 1 cache entries
INFO:root:Cleanup complete, 24 cache entries remain

We can then watch the data gradually decay as each entry times out in turn. We can easily repopulate the cache, this
time let’s catch it in a browser by navigating to:

4.2. OData Providers 121

Pyslet Documentation, Release 0.6.20160201

http://localhost:8080/KeyValuePairs ('25") ?$format=json

The result is:

{"d":{"_metadata":{"uri":"http://localhost:8080/KeyValuePairs('25")
", "type":"MemCacheSchema.KeyValuePair"}, "Key":"25", "Value":"2","
Expires":"/Date (1392679105162)/"}}

We can pick the value our directly with a URL like:

http://localhost:8080/KeyValuePairs ('25"') /Value/S$value

This returns the simple string ‘Z’.

Conclusion

It is easy to write an OData server using Pyslet!

4.2.2 A SQL-Backed Data Service

The sample code for this service is in the samples directory in the Pyslet distribution.
This project demonstrates how to construct a simple OData service based on the SOLiteEntityContainer class.

We don’t need any customisations, this class does everything we need ‘out of the box’. Although we use SQLite
by default, an implementation is also provided using the MySQLdb adaptor. If you want to use a database other
than these you will need to create a new implementation of the generic SOLEntityContainer. See the reference
documentation for sg1ds for details on what is involved. You shouldn’t have to change much!

Step 1: Creating the Metadata Model

If you haven’t read the Sample Project: InMemory Data Service yet it is a good idea to do that to get a primer on
how providers work. The actual differences between writing a SQL-backed service and one backed by the in-memory
implementation are minimal. I haven’t repeated code here if it is essentially the same as the code shown in the previous
example, but remember that the full working source is available in the samples directory.

For this project, I’ve chosen to write an OData service that exposes weather data for my home town of Cambridge,
England. The choice of data set is purely because I have access to over 340,000 data points stretching back to 1995
thanks to the excellent Weather Station website run by the University of Cambridge’s Digital Technology Group:
http://www.cl.cam.ac.uk/research/dtg/weather/

We start with our metadata model, which we write by hand. There are two entity sets. The first contains the actual
data readings from the weather station and the second contains notes relating to known inaccuracies in the data. I've
included a navigation property so that it is easy to see which note, if any, applies to a data point.

Here’s the model:

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>

<edmx:Edmx Version="1.0" xmlns:edmx="http://schemas.microsoft.com/ado/2007/06/edmx"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata">
<edmx:DataServices m:DataServiceVersion="2.0">

<Schema Namespace="WeatherSchema" xmlns="http://schemas.microsoft.com/ado/2006/04/ed:
<EntityContainer Name="CambridgeWeather" m:IsDefaultEntityContainer="true">
<EntitySet Name="DataPoints" EntityType="WeatherSchema.DataPoint"/>

<EntitySet Name="Notes" EntityType="WeatherSchema.Note"
<AssociationSet Name="DataPointNotes" Association="Weat}h

>
rerSchema.Dat:

122 Chapter 4. The Open Data Protocol (OData)

http://www.cl.cam.ac.uk/research/dtg/weather/

Pyslet Documentation, Release 0.6.20160201

<End Role="DataPoint" EntitySet="DataPoints"/>
<End Role="Note" EntitySet="Notes"/>
</AssociationSet>
</EntityContainer>
<EntityType Name="DataPoint">

<Key>

<PropertyRef Name="TimePoint"/>
</Key>
<Property Name="TimePoint" Type="Edm.DateTime" Nullables
<Property Name="Temperature" Type="Edm.Single" m:FC_Targ
<Property Name="Humidity" Type="Edm.Byte"/>
<Property Name="DewPoint" Type="Edm.Single"/>
<Property Name="Pressure" Type="Edm.Intl6"/>
<Property Name="WindSpeed" Type="Edm.Single"/>
<Property Name="WindDirection" Type="Edm.String" MaxLeng
<Property Name="WindSpeedMax" Type="Edm.Single"/>
<Property Name="SunRainStart" Type="Edm.Time" Precisions
<Property Name="Sun" Type="Edm.Single"/>
<Property Name="Rain" Type="Edm.Single"/>

<NavigationProperty Name="Note" Relationship="WeatherSc}
FromRole="DataPoint" ToRole="Note"/>
</EntityType>
<EntityType Name="Note">
<Key><PropertyRef Name="ID"></PropertyRef></Key>
<Property Name="ID" Type="Edm.Int32" Nullable="false"/>
<Property Name="StartDate" Type="Edm.DateTime" Nullables
<Property Name="EndDate" Type="Edm.DateTime" Nullable="f
<Property Name="Details" Type="Edm.String" MaxLength="1(
<NavigationProperty Name="DataPoints" Relationship="Weat
FromRole="Note" ToRole="DataPoint"/>
</EntityType>
<Association Name="DataPointNote">
<End Role="DataPoint" Type="WeatherSchema.DataPoint" Mul
<End Role="Note" Type="WeatherSchema.Note" Multiplicitys
</Association>
</Schema>
</edmx:DataServices>

r"false" Prec:
etPath="Synd:

th="3" Unico«

+"0"></Propert

rtema .DataPoint

r"false" Prec:
false" Precis:
24" Nullable:
herSchema.Daf

tiplicity="x'

F"0. L1/ >

</edmx : Edmx>

I’ve added two feed customisations to this model. The TimePoint field of the data point will be echoed in the Atom ‘up-
dated’ field and the Temperature field will become the Atom title. This will make my OData service more interesting
to look at in a standard browser.

As before, we’ll save the model to a file and load it when our script starts up.

To link the model to a SQLite database back-end we need to create an instance of SOLiteEntityContainer:

SAMPLE_DB='weather.db'

def make_container (doc, drop=False, path=SAMPLE_DB) :

if drop and os.path.isfile (path):
os.remove (path)

create not os.path.isfile (path)

container SQLiteEntityContainer (
file_path=path,
container=doc.root.DataServices|['WeatherSchema.CambridgeWeather'])

if create:

container.create_all_tables|()
return doc.root.DataServices|['WeatherSchema.CambridgeWeather']

4.2. OData Providers 123

Pyslet Documentation, Release 0.6.20160201

This function handles the only SQL-specific part of our project. When we create a SQLite container we have to pass
two keyword arguments: rather than just the container definition as we did for the in-memory implementation. We
don’t need to return a value because the SQL implementation is bound to the model that was passed in doc.

The code above automatically creates the tables if the database doesn’t exist yet. This is fine if you are starting from
scratch but if you want to expose an existing database you’ll need to work backwards from your existing schema
when creating the model. Anyway, letting Pyslet create your SQL tables for you neglects your DBA who will almost
certainly want to create indexes to optimise performance and tweak the model to get the best out of your platform.
The automatically generated SQL script is supposed to be a starting point, not the complete solution.

For example, the data set I used for this project has over 300,000 records in it. At the end of this exercise I had an
OData server capable of serving this information from a SQLite database but example URLs were taking 10s or more
on my laptop to load. I created an index on the Temperature column using the SQLite command line and the page load
times were instantaneous:

sglite> create index TIndex ON DataPoints (Temperature);

Modelling an Existing Database

For simple data properties it should be fairly easy to map to the EDM. Here is the way Pyslet maps simple types in the
EDM to SQL types:

EDM Type SQL Equivalent

Edm.Binary BINARY (MaxLength) if FixedLength specified
Edm.Binary VARBINARY (MaxLength) if no FixedLength
Edm.Boolean BOOLEAN

Edm.Byte SMALLINT

Edm.DateTime TIMESTAMP

Edm.DateTimeOffset | CHARACTER(20), ISO 8601 string representation is used
Edm.Decimal DECIMAL (Precision,Scale), defaults 10,0

Edm.Double FLOAT

Edm.Guid BINARY(16)

Edm.Int16 SMALLINT

Edm.Int32 INTEGER

Edm.Int64 BIGINT

Edm.SByte SMALLINT

Edm.Single REAL

Edm.String CHAR(MaxLength) or VARCHAR(MaxLength)
Edm.String NCHAR(MaxLength) or NVARCHAR(MaxLength) if Unicode="true”
Edm.Time TIME

Navigation properties, and complex properties do not map as easily but they can still be modelled. To start with, look
at the way the SQLite implementation turns our model into a SQL. CREATE TABLE statement:

>>> import weather

>>> doc=weather.load_metadata ()

>>> weather.make_container (doc)

>>> dataPoints=doc.root.DataServices|['WeatherSchema.CambridgeWeather.DataPoints'].OpenC
>>> print dataPoints.create_table_query () [0]

CREATE TABLE "DataPoints" ("TimePoint" TIMESTAMP NOT NULL,
"Temperature" REAL, "Humidity" SMALLINT, "DewPoint" REAL, "Pressure"
SMALLINT, "WindSpeed" REAL, "WindDirection" TEXT, "WindSpeedMax"
REAL, "SunRainStart" REAL, "Sun" REAL, "Rain" REAL,
"DataPointNotes_ID" INTEGER, PRIMARY KEY ("TimePoint"), CONSTRAINT
"DataPointNotes" FOREIGN KEY ("DataPointNotes_ID") REFERENCES
"Notes" ("ID"))

124 Chapter 4. The Open Data Protocol (OData)

llection ()

Pyslet Documentation, Release 0.6.20160201

After all the data properties there’s an additional property called DataPointNotes_ID which is a foreign key into into
the Notes table. This was created automatically to model the association set that links the two EntitySets in the
container.

Pyslet generates foreign keys for the following types of association:

0..1to 1 | With UNIQUE and NOT NULL constraints
*to 1 With a NOT NULL constraint only
*1t00..1 | No additional constraints

When these relationships are reversed the foreign key is of course created in the target table.

What if your foreign key has a different name, say, NoteID? Pyslet gives you the chance to override all name mappings.
To fix up this part of the model you need to create a derived class of the base class SOLEntityContainer and
override the mangle_ name () method.

In this case, the method would have been called like this:

quotedName=container.mangle_name ((u"DataPoints",u"DataPointNotes",u"ID"))

There is a single argument consisting of a tuple. The first item is the name of the EntitySet (SQL TABLE) and the
subsequent items complete a kind of “path’ to the value. Foreign keys have a path comprising of the AssociationSet
name followed by the name of the key field in the target EntitySet. The default implementation just joins the path with
an underscore character. The method must return a suitably quoted value to use for the column name. To complete
the example, here is how our subclass might implement this method to ensure that the foreign key is called ‘NotelD’
instead of ‘DataPointNotes_ID’:

def mangle_name (self, source_path):
if source_path==(u"DataPoints",u"DataPointNotes",u"ID") :
return self.quote_identifier (u'NoteID')
else:
return super (MyCustomerContainer, self) .mangle_name (source_path)

You may be wondering why we don’t expose the foreign key field in the model. Some libraries might force you to
expose the foreign key in order to expose the navigation property but Pyslet takes the opposite approach. The whole
point of navigation properties is to hide away details like foreign keys. If you really want to access the value you can
always use an expansion and select the key field in the target entity. Exposing it in the source entity just tempts you
in to writing code that ‘knows’ about your model for example, if we had exposed the foreign key in our example as a
simple property we might have been tempted to do something like this:

noteID=data_point|['DataPointNotes_ID'].value
if noteID is not None:
note=noteCollection[notelID]
do something with the note

When we should be doing something like this:

note=data_point ['Note'].GetEntity ()
if note is not None:
do something with the note

Complex types are handled in the same way as foreign keys, the path being comprised of the name(s) of the complex
field(s) terminated by the name of a simple property. For example, if you have a complex type called Address and two
properties of type Address called “Home” and “Work” you might end up with SQL that looked like this:

CREATE TABLE Employee (

Home_Street NVARCHAR (50),
Home_City NVARCHAR(50),
Home_Phone NVARCHAR (50),

4.2. OData Providers 125

Pyslet Documentation, Release 0.6.20160201

Work_Street NVARCHAR(50),
Work_City NVARCHAR(50),
Work_Phone NVARCHAR (50)

)

You often see SQL written like this anyway so if you want to tweak the mapping to put a Complex type in your model
you can.

Finally, we need to deal with the symmetric relationships, 1 to 1 and * to *. These are modelled by separate tables. 1 to
1 relationships are best avoided, the advantages over combining the two entities into a single larger entity are marginal
given OData’s $select option which allows you to pick a subset of the fields anyway. If you have them in your SQL
schema already you might consider creating a view to combine them before attempting to map them to the metadata
model.

Either way, both types of symmetric relationships get mapped to a table with the name of the AssociationSet. There are
two sets of foreign keys, one for each of the EntitySets being joined. The paths are rather complex and are explained
in detail in SOLAssociationCollection.

Step 2: Test the Model

Before we add the complication of using our model with a SQL database, let’s test it out using the same in-memory
implementation we used before:

def dry_run():
doc=load_metadata ()
container=InMemoryEntityContainer (doc.root.DataServices|['WeatherSchema.Cambridgg
weatherData=doc.root .DataServices|['WeatherSchema.CambridgeWeather.DataPoints']
weather_notes=doc.root.DataServices|['WWeatherSchema.CambridgeWeather.Notes']
load_data (weatherData, SAMPLE_DIR)
load_notes (weather_notes, '"weathernotes.txt',weatherData)
return doc.root.DataServices|['WeatherSchema.CambridgeWeather']

SAMPLE_DIR here is the name of a directory containing data from the weather station. The implementation of the
load_data function is fairly ordinary, parsing the daily text files from the station and adding them to the DataPoints
entity set.

The implementation of the load_notes function is more interesting as it demonstrates use of the API for binding entities
together using navigation properties:

Weather'])

def load_notes (weather_notes, file_name,weatherData) :
with open(file_name, 'r') as f:
id=1
with weather_notes.OpenCollection() as collection, weatherData.OpenCollg
while True:
line=f.readline ()
if len(line)==
break
elif line[0]=="#":
continue
noteWords=line.split ()
if noteWords:
note=collection.new_entity ()
note['ID'].set_from_value (id)
start=iso.TimePoint (
date=iso.Date.from_str (noteWords[0]),
time=iso.Time (hour=0,minute=0, second=0))
note['StartDate'] .set_from _value (start)

rction ()

126 Chapter 4. The Open Data Protocol (OData)

as d:

Pyslet Documentation, Release 0.6.20160201

end=iso.TimePoint (

date=iso.Date.from_str (noteWords[1]) .offset (days=1),

time=iso.Time (hour=0,minute=0, second=0))
note['EndDate'] .set_from_value (end)
note['Details'].set_from_value (string. join (noteWords([2:]," ']

collection.insert_entity (note)
now find the data points that match
data.set_filter (core.CommonExpression.from_str ('
for data_point in data.values():
data_point['Note'] .BindEntity (note)
data.update_entity (data_point)
id=id+1
with weather_notes.OpenCollection() as collection:
collection.set_orderby (core.CommonExpression.OrderByFromString ('StartDaf
for e in collection.itervalues():
with e['DataPoints'].OpenCollection() as affectedData:
print "S%s-<¢s: (data points affected) "% (unicode (el
unicode (e['EndDate'] .value),e['Details'].value,]

The function opens collections for both Notes and DataPoints. For each uncommented line in the source file it creates
a new Note entity, then, it adds a filter to the collection of data points that narrows down the collection to all the data
points affected by the note and then iterates through them binding the note to the data point and updating the entity (to
commit the change to the data source). Here’s a sample of the output on a dry-run of a small sample of the data from
November 2007:

2007-12-25T00:00:00-2008-01-03T00:00:00: All sensors inaccurate (0 data points affected)
2007-11-01T00:00:00-2007-11-23T00:00:00: rain sensor over reporting rainfall following 7

You may wonder why we use the values function, rather than itervalues in the loop that updates the data points.
itervalues would certainly have been more efficient but, just like native Python dictionaries, it is a bad idea to modify
the data source when iterating as unpredictable things may happen. The concept is extended by this API to cover the
entire container: a thread should not modify the container while iterating through a collection.

Of course, this API has been designed for parallel use so there is always the chance that another thread or process is
modifying the data source outside of your control. Behaviour in that case is left to be implementation dependent -
storage engines have widely differing policies on what to do in these cases.

If you have large amounts of data to iterate through you should consider using list(collection.iterpage(True)) instead.
For a SQL data souurce this has the disadvantage of executing a new query for each page rather than spooling data
from a single SELECT but it provides control over page size (and hence memory usage in your client) and is robust to
modifications.

As an aside, if you change the call from values to itervalues in the sample you may well discover a bug
in the SQLite driver in Python 2.7. The bug means that a commit on a database connection while you are
fetching data on another cursor causes subsequent data access commands to fail. It’s a bit technical, but
the details are here: http://bugs.python.org/issuel0513

Having tested the model using the in-memory provider we can implement a full test using the SQL back-end we
created in make_container above. This test function prints the 30 strongest wind gusts in the database, along with any
linked note:

def test_model (drop=False) :
doc=load_metadata ()
container=make_container (doc,drop)
weatherData=doc.root.DataServices|['WeatherSchema.CambridgeWeather.DataPoints']
weather_notes=doc.root.DataServices|['WeatherSchema.CambridgeWeather.Notes']
if drop:
load_data (weatherData, SAMPLE_DIR)
load_notes (weather_notes, 'weathernotes.txt',weatherData)

4.2. OData Providers 127

TimePoint ge

e desc'))

StartDate'] .-
en (affectedD:

alfunction (

http://bugs.python.org/issue10513

Pyslet Documentation, Release 0.6.20160201

with weatherData.OpenCollection() as collection:
collection.set_orderby (core.CommonExpression.OrderByFromString ('WindSpegq
collection.set_page (30)
for e in collection.iterpage():
note=e['Note'].GetEntity ()
if e['WindSpeedMax'] and e['Pressure']:

print "<2%s: Pressure $imb, max wind speed $0.1f knots (2

e['Pressure'].value,e['WindSpeedMax'] .value, e[']
note['Details'] if note is not None else "")

dMax desc'))

.1f mph);
lindSpeedMax'

Here’s some sample output:

>>> weather.test_model ()

2002-10-27T10:30:00: Pressure 988mb, max wind speed 74.0 knots (85.2 mph);

2004-03-20T15:30:00: Pressure 993mb, max wind speed 72.0 knots (82.9 mph);

2007-01-18T14:30:00: Pressure 984mb, max wind speed 70.0 knots (80.6 mph);
[and so on]

2007-01-11T10:30:00: Pressure 998mb, max wind speed 58.

0 knots (66.7 mph);
2007-01-18T07:30:00: Pressure 980mb, max wind speed 58.0 knots (66.7 mph);
1996-02-18T04:30:00: Pressure 998mb, max wind speed 56.0 knots (64.4 mph); humidity and
2000-12-13T01:30:00: Pressure 991mb, max wind speed 56.0 knots (64.4 mph);
2002-10-27T13:00:00: Pressure 996mb, max wind speed 56.0 knots (64.4 mph);
2004-01-31T17:30:00: Pressure 983mb, max wind speed 56.0 knots (64.4 mph);

dewpoint reac

Notice that the reading from 1996 has a related note.

Step 4: Link the Data Source to the OData Server

This data set is designed to be updated by some offline process that polls the weather station for the latest readings
and adds them to the database behind the scenes. Unlike the memory-cache example, the OData interface should be
read-only so we use the ReadOnlyServer sub-class of the OData server:

def run_weather_server (weather_app=None) :
"""Starts the web server running"""
server=make_server ('', SERVICE_PORT,weather_app)
logging.info ("HTTP server on port i running"$SERVICE_PORT)
Respond to requests until process is killed
server.serve_forever ()

def main () :
"""Executed when we are launched"""
doc=load_metadata ()
container=make_container (doc)
server=ReadOnlyServer (serviceRoot=SERVICE_ROOT)
server.SetModel (doc)
t=threading.Thread(target=run_weather_server, kwargs={'weather_ app':server})
t.setDaemon (True)

t.start ()
logging.info ("Starting HTTP server on ¢s"%$SERVICE_ROOT)
t.Jjoin ()

Once the script is running we test in a browser. I’ve loaded the full data set into the server, how many data points?
Here’s how we can find out, in our browser we go to:

http://localhost:8080/DataPoints/$count

128 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

The result is 325213. Firefox recognises that the feeds are in Atom format and renders the feed customisations we
made earlier.

J:: Weatherﬁchema.t_zlmbr]dgeWEat... u o= l

T e—— —
i\-‘] > | |G}| | localhost: 8080 /DataPoints?3orderby=Temperature desc&itop=30 L

E Subscribe to this feed using | B Live Bookmarks

Always use Live Bookmarks to subscribe to feeds.

Subscribe Now

WeatherSchema.CambridgeWeather.DataPoints

38.3
b August 2003 17:30

37.8
B August 2003 16:30

37.8
6 August 2003 17:00

When we access this page with logging turned up to INFO we get the following output on the console, interspersed
with the simple HTTP server output:

INFO:root : SELECT COUNT () FROM "DataPoints"; []

127.0.0.1 - - [21/Feb/2014 22:57:01] "GET /DataPoints/$count HTTP/1.1" 200 6
INFO:root :SELECT "TimePoint", "Temperature", "Humidity", "DewPoint", "Pressure", "WindSg
127.0.0.1 - - [21/Feb/2014 22:57:18] "GET /DataPoints?$orderby=Temperature%20descé&Stop=3

eed", "WindD:
0 HTTP/1.1" :

You may wonder what those square brackets are doing at the end of the SQL statements. They’re actually used for
logging the parameter values when the query has been parameterised. If we add a filter you’ll see what they do:

http://localhost:8080/DataPoints?$filter=Temperature%?2 Ogt%20flOO&$orderby=Temperature%2q)asc&$top=30

And here’s the output on the console:

INFO:root :SELECT "TimePoint", "Temperature", "Humidity", "DewPoint", "Pressure", "WindSg
127.0.0.1 - - [21/Feb/2014 16:35:09] "GET /DataPoints?$filter=Temperature%20gt%$20-100&5q

Yes, all Pyslet queries are fully parameterized for security and performance!

4.2.3 Sample Project: Custom Data Service

The sample code for this service is in the samples directory in the Pyslet distribution: fsodata.py

This project demonstrates how to construct a simple OData service based on a custom EntityContainer class. It also
demonstrates how to handle media streams in your own data sources.

Although OData is often talked about as the ODBC of the web there is no reason why your data has to be in a database
format to be exposed by OData...

4.2. OData Providers 129

eed", "WindD:
rderby=Tempe:

Pyslet Documentation, Release 0.6.20160201

Step 0: Create the DAL implementation

If your data source is in a general form then you will want to create general classes dervied from
pyslet.odataZ.core.EntityCollection and pyslet.odataZ2.core.NavigationCollection
For example, suppose you want to expose data stored in a ‘Unix’ database accessed using one of Python’s dbm
modules. You could write a general implementation that maps this DAL API to the dbm interface. This is similar
to the approach taken with the SQL classes, they are written using Python’s DB API enabling a wide variety of SQL
databases to be exposed through OData with little or no extra work required for a specific data set.

On the other hand, if your datasource is fairly specific to a particular application you might create specific implemen-
tations of these classes that are tied to the entities in your model.

In this project, we’ll take the latter approach and so defer discussion of the implementation details until we’ve con-
structed the model.

Step 1: Creating the Metadata Model

For small amounts of data, the basic OData classes already supplied do almost everything you need. In this example
we’ll expose information about the files and directories in a designated part of the file system for an application like a
blog or a simple file sharing site. We’ll assume that there aren’t too many files and that walking the tree is a relatively
painless operation to perform.

As before, we start with our metadata model, which we write by hand. There is just one entity set: Files. It has two
navigation properties that are defined by a single parent/child association.

Here’s the model:

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<edmx:Edmx Version="1.0"
xmlns:edmx="http://schemas.microsoft.com/ado/2007/06/edmx"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata">
<edmx:DataServices m:DataServiceVersion="2.0">
<Schema Namespace="FSSchema"
xmlns="http://schemas.microsoft.com/ado/2006/04/edm">
<EntityContainer Name="FS" m:IsDefaultEntityContainer="true">
<EntitySet Name="Files" EntityType="FSSchema.File"/>
<AssociationSet Name="Directories"
Association="FSSchema.Directory">
<End Role="Parent" EntitySet="Files"/>
<End Role="Child" EntitySet="Files"/>
</AssociationSet>
</EntityContainer>
<EntityType Name="File" m:HasStream="true">
<Key>
<PropertyRef Name="path"/>
</Rey>
<Property Name="path" Type="Edm.String" Nullable="false"
MaxLength="1024" Unicode="false" FixedLength="false"/>
<Property Name="name" Type="Edm.String" Nullable="false"
MaxLength="255" Unicode="true" FixedLength="false"
m:FC_TargetPath="SyndicationTitle"
m:FC_KeepInContent="true"/>
<Property Name="isDirectory" Type="Edm.Boolean"
Nullable="false"/>
<Property Name="size" Type="Edm.Int32" Nullable="true"/>
<Property Name="lastAccess" Type="Edm.DateTime"
Nullable="false" Precision="3"/>
<Property Name="lastModified" Type="Edm.DateTime"

130 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

Nullable="false" Precision="3"
m:FC_TargetPath="SyndicationUpdated"
m:FC_KeepInContent="true"/>
<NavigationProperty Name="Files"
Relationship="FSSchema.Directory" FromRole="Parent"
ToRole="Child"/>
<NavigationProperty Name="Parent"
Relationship="FSSchema.Directory" FromRole="Child"
ToRole="Parent"/>
</EntityType>
<Association Name="Directory">
<End Role="Parent" Type="FSSchema.File"
Multiplicity="0..1"/>
<End Role="Child" Type="FSSchema.File" Multiplicity="«"/>
</Association>
</Schema>
</edmx:DataServices>
</edmx :Edmx>

I’ve added two feed customisations to this model. The last modified date of the file will be echoed in the Atom
‘updated’ field and the file’s name will become the Atom title. This will make my OData service more interesting to
look at in a standard browser.

Finally, we want to actually download these files so I've added the HasStream attribute to the EntityType declaration.
The idea is that using the $value path option in the URL will allow you to download the contents of the file.

As before, we’ll save the model to a file and load it when our script starts up. This model is fsschema.xml in the
samples directory.

Step 0: Revisited

Now we have our metadata model specified we can start implementing the classes that will enable it. The keys in our
entities are pseudo-paths to the files within a special directory using °/’ as a separator, for example ‘/dirA/dirB/file.txt’.

We start with a constant to specify the BASE_PATH and two functions, one that turns our path ‘keys’ into file-system
absolute paths and one that reverses the transformation. I won’t repeat the code for these functions here as they can
be found in the sample code under the names fspath_to_path and path_to_fspath, but their main job is to ensure that

symbolic links and all files and directories with names starting .’ are hidden from the service and that no nefarious
OData queries can circumvent the restrictions on the exposed directory.

Given an absolute file system path we can now write a function that will fill in the details for an entity. Notice the last
thing it does is set the entity’s exists flag to True indicating that the entity represents a real object in our exposed
directory:

def fspath_to_entity (fspath, e):

path = fspath_to_path (fspath)

e['path'] .set_from_value (path)

if path == '/'":
e['name'] .set_from _value('/")

else:
e['name'] .set_from_value (path.split('/")[-11])

if os.path.isfile(fspath):
e['isDirectory'].set_from_value (False)

try:
info = os.lstat (fspath)
e['size'].set_from_value (info.st_size)
e['lastAccess'].set_from_value (info.st_atime)

e['lastModified'].set_from value (info.st_mtime)

4.2. OData Providers 131

Pyslet Documentation, Release 0.6.20160201

except IOError:
just leave the information as NULLs
pass
elif os.path.isdir (fspath):
e['isDirectory'].set_from_value (True)
else:
raise ValueError
e.exists = True

Armed with this utility function we derive a class from pyslet.odataZ.core.EntityCollection and bind
it to our metadata model when the script starts up. We’ll look at the details of this class later but let’s start with the
declaration:

import pyslet.odata2.core as odata

class FSCollection (odata.EntityCollection):
""rothis is our custom collection class
more details below"""

Let’s look at the first part of the load_metadata function which is called on script start-up:

import pyslet.odata2.metadata as edmx

def load_metadata (
path=os.path.join(os.path.split(__file_) [0], 'fsschema.xml'")):
"""l,oads the metadata file from the script directory."""
doc = edmx.Document ()
with open (path, 'rb') as f:
doc.Read (f)
next step is to bind our model to it
container = doc.root.DataServices|['FSSchema.FS']
container['Files'].bind(FSCollection)
... more initialisation stuff here

The critical step here is the last line where we bind our custom collection class to the ‘Files’ entity set. From this point
on, calls to the DAL API for the File entity set will be routed to our collection class, not the default implementation.
What do we need to do to handle them?

Writing our Custom Entity Collection

The basic pyslet.odata2.csdl.EntityCollection class documents the key methods we must override.
Our implementation is made a little simpler because we don’t need to override the __init__ method. In fact, it is
enough to override just a single method to get our custom provider working: itervalues. There’s a catch though,
itervalues must iterate through all the entities in the collection honouring any filter, ordering and expand rules that are
in effect. This sounds like a lot of work but the basic implementation has helper methods that can be used to wrap a
simpler implementation.

We start by defining a generator function that yields all the entities in the collection, in no particular order:

def generate_entities(self):
"""List all the files in our file system

The first item yielded is a dummy value with path /"""

e = self.new_entity()
e['path'].set_from _value('/")
e['name'].set_from value('/")
e['isDirectory'].set_from_value (True)
e.exists = True

132 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

yield e
for dirpath, dirnames, filenames in os.walk (BASE_PATH) :
for d in dirnames:
fspath = os.path.join(dirpath, d)

e = self.new_entity()

try:
fspath_to_entity (fspath, e)
yield e

except ValueError:
unexpected but ignore
continue
for £ in filenames:
fspath = os.path.join(dirpath, f)

e = self.new_entity()

try:
fspath_to_entity (fspath, e)
yield e

except ValueError:
unexpected but ignore
continue

We use the builtin os.walk generator and the helper function fspath_to_entity that we defined earlier. Notice how we
use the new_entity () method to create an instance and then pass it to fspath_to_entity to get it filled in with the
details. The first entity, corresponding to the root of our exposed directory, is created by hand for simplicity.

We can now use this generator, combined with the wrapper methods defined by the base class for itervalues:

def itervalues (self):
return self.order_entities(
self.expand_entities(self.filter_entities(
self.generate_entities())))

Our generator function is passed to filter_entities which iterates through our generator yielding only the entities that
match the filter. Similarly, this filtered iterable is then iterated by the expand_entities method to implement the expand
and select rules. Finally, the resulting generator is wrapped by the order_entities method which sorts them according
to the orderby rules. This last step does nothing if there is no orderby option in effect but if there is it is a bit wasteful
because the iterator will be turned into a list before it is sorted, causing all entities to be loaded into memory. See Big
vs Small Data for advice on dealing with this issue.

With itervalues defined our provider should now be working. The navigation properties are not bound yet so they’ll
yield nothing but the basic Files feed should be returning all the eligible files in the BASE_PATH directory.

Before we pack up and commit our changes though we need to revisit the advice in the base class. Although functional,
our collection is very inefficient when someone uses direct key lookup. Essentially, we’re iterating through the entire
collection every time, just to find a matching key. We SHOULD override __getitem__ () to improve our code:

def _ _getitem__ (self, path):
"""Get just a single file, by path"""
try:
fspath = path_to_fspath (path)
e = self.new_entity()
fspath_to_entity (fspath, e)
if self.check_filter(e):
if self.expand or self.select:
e.Expand(self.expand, self.select)
return e
else:
raise KeyError ("Filtered path: " % path)
except ValueError:

4.2. OData Providers 133

Pyslet Documentation, Release 0.6.20160201

o

raise KeyError ("No such path: " % path)

The code is pretty simple, we convert the path ‘key’ into a full file system path and then return just that entity. Our
path_to_fspath method takes care of raising KeyError for us if the path doesn’t correspond to an object that exists in
the directory we’re exposing. fspath_to_entity raises ValueError if the file system path turns out not to belong to a
regular file or directory so we catch this and raise KeyError there too.

Notice that the value returned by key lookup must still honour any filter in place. We use the base class method
check_filter tohelp us implement this requirement. Similarly for set_expand.

The final suggestion for improvement is to override the __len__ method in order to provide a more efficient imple-
mentation for determining the number of entities in the collection. Unfortunately, in this case we don’t really have a
better method than iterating through them all so we skip that part.

Dealing With Navigation

To make our example more interesting, I've defined two navigation properties that enable you to use OData
to traverse the file system by navigating up to a File’s parent directory or down to the files and sub-
directories it contains. The implementations are similar but we have to define two separate classes derived from
pyslet.odataZ.core.NavigationCollection and we have to use the attribute from_entity which con-
tains the entity we are navigating from:

class FSChildren (odata.NavigationCollection) :
itervalues defined as before

def generate_entities(self):
"""List all the children of an entity"""
path = self.from_entity['path'].value
fspath = path_to_fspath (path)
if os.path.isdir (fspath) :
for filename in os.listdir (fspath):
child_fspath = os.path.join(fspath, filename)

try:
e = self.new_entity()
fspath_to_entity(child_fspath, e)
yield e

except ValueError:
skip this one
continue

__getitem omitted for brevity...

class FSParent (odata.NavigationCollection):
itervalues defined as before
def generate_entities(self):

"""I,ist the single parent of an entity"""
path = self.from_entity['path'].value

if path == '/'":
special case, no parent
return

parent_path = string.join(path.split('/")[:-11, '/")
if not parent_path:
special case!

134 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

parent_path = '/’
parent_fspath = path_to_fspath (parent_path)
try:

e self.new_entity ()

fspath_to_entity (parent_fspath, e)
yield e
except ValueError:
really unexpected, every path should have a parent
except for the root
raise ValueError ("Unexpected path error: " % parent_path)

__getitem omitted for brevity...

Notice in the second class that navigation properties are always defined in terms of collections, even if they are only
supposed to yield a maximum of one item as is the case here with navigation to the parent directory.

To make these navigation classes active we have to bind them in a similar way to the way we bound the main collection
class, here’s the rest of the load_metadata function we defined earlier:

container['Files'].BindNavigation('Files', FSChildren)
container['Files'].BindNavigation('Parent', FSParent)

Adding Support for Streams

To access the contents of the file we need to implement support for the stream methods on the base collection. These
methods are only supported (and needed) on base collections, not on navigation collections. As a result, we’ll add
them to our FSCollection class.

To support reading streams you need to support two new methods, read_stream and read_stream_close. These methods
are very similar, they just provide different approaches to obtaining the data. read_stream pushes the data by writing
it to a file you pass in as a parameter and read_stream_close pulls the stream, returning a generator that iterates over
the data and closing the collection when the iteration terminates. This second form is used by the OData server as it is
more compatible with the way the WSGI framework expects to consume data.

The stream methods use a very simple class St reamInfo to return some basic information about the stream such as
the content type, the size and modification time. The content type is required, everything else is optional:

def _get_path_info(self, path):
try:
e = self[path]
fspath = path_to_fspath (path)
if os.path.isdir (fspath):
directories return zero-length data
sinfo = odata.StreamInfo (type=params.PLAIN_TEXT, size=0)
else:
root, ext = os.path.splitext (fspath)
type = map_extension (ext)
modified = e['lastModified'].value
if modified:
modified = modified.with_zone (0)
sinfo = odata.StreamInfo (
type=type,
modified=modified,
size=e['size'].value)
return fspath, sinfo
except ValueError:
raise KeyError ("No such path: " % path)

4.2. OData Providers 135

Pyslet Documentation, Release 0.6.20160201

This method returns a tuple of the native file system path and the basic information about the stream. For directories,
we return a zero-length text/plain stream, for files we use an internally defined map_extension function to look up the
file extension in a simple dictionary.

The type is an instance of pyslet.http.params.MediaType which is a class wrapper for content types, you
can create you own very simply by passing the type and subtype as strings:

type = params.MediaType('image', 'gif")

or, if you have untrusted input, by creating an instance from a string:

type = params.MediaType.from_str (

'text/html; name=index.htm; charset="utf-8"")
print type
prints: text/html; charset=utf-8; name=index.htm

To generate the data we use another private method:

def _generate_file(self, fspath, close_it=False):
try:
with open (fspath, 'rb') as f:
data = "'
while True:
data = f.read(io.DEFAULT_BUFFER_SIZE)
if not data:
EOF
break
else:
yield data
finally:
if close_it:
self.close ()

This is a generator method that yields the data in chunks. When the iteration is complete (or destroyed) the collection
can be closed and cleaned up automatically by passing True for close_it.

Armed with these two methods we can finish our implementation by providing implementations of the two required
methods for media stream support:

def read_stream(self, path, out=None):
fspath, sinfo = self._get_path_info (path)
if out is not None and sinfo.size:
for data in self._generate_file (fspath):
out.write (data)
return sinfo

def read_stream_close(self, path):
fspath, sinfo = self._get_path_info (path)
if sinfo.size:
return sinfo, self._generate_file(fspath, True)
else:
self.close()
return sinfo, []

Step 2: Test the Model

Testing our model is fairly easy, I loaded a couple of files and a directory into the BASE_PATH and then ran this
session from the interpreter:

136 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

>>> import fsodata

>>> doc = fsodata.load_metadata ()
>>> container = doc.root.DataServices|['FSSchema.FS']
>>> collection = container['Files'].OpenCollection()

>>> for path in collection: print path

/
/dtest
/tmp.txt
/dtest/tmp.txt
>>> for f in collection.itervalues():
print f['path'].value, str(f['lastModified'].value)
/ None
/dtest None
/tmp.txt 2014-07-29T10:02:21
/dtest/tmp.txt 2014-07-29T10:23:18

>>> info, gen = collection.read_stream_close('/tmp.txt")
>>> info.size

6

>>> str(info.type)

'text/plain’

>>> for data in gen: print data
Hello

>>>

Step 3: Link the Data Source to the OData Server

This step is almost identical to previous examples.

Once the script is running we can test in a browser:

4.2. OData Providers

137

Pyslet Documentation, Release 0.6.20160201

(3] \
e O F55chema.F5.Files I

s b

(€=) @ localhost:8081 Files a

E Subscribe to this feed using Live Bookmarks
Always use Live Bookmarks to subscribe to feeds.

Subscribe Now

FSSchema.FS.Files
/

7 August 2014 08:45

dtest
7 August 2014 08:45

tmp.txt
20 July 2014 11:23

tmp.txt
29 July 2014 11:02

Note: Sharp eyed readers might notice the difference in the time values displayed by the browser and those displayed
by the interpreter session above. It is is worth drilling down a little into EDM’s DateTime type to explain. This type
has fallen out of favour in OData version 4 but the idea of storing a date time value in an unspecified local time can be
meaningful, even if the UTC time it represents varies depending on the location, daylight savings and so on. Indeed,
this abstract concept is the one we use in day-to-day life all the time!

In this case, the dates returned by os.stat are elapsed seconds from the epoch, they are not really expressed in any
particular time zone but bear in mind that their meaning doesn’t change when the clocks change. This elapsed time
is passed directly to the DateTime class where it is treated as a ‘unix’ time, in effect ensuring that our lastModified
dates are always stored in UTC (but with no explicit UTC offset).

The catch comes when we publish our information as an Atom feed using OData. There’s a slight oversight in the
OData specification here because Atom insists that the updated time of an entry has a date with a timezone. When
serialising the entity in Atom format Pyslet assumes that DateTime values are in UTC (which is correct in this case).
Firefox, when it renders the feed, is smart enough to convert these updated times into local times for my system (which
at the time was running in UTC+01:00).

138 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

Big vs Small Data

Real applications will probably want to expose more data than our simple example. How you do this depends on your
data source. The worst case scenario for the implementation shown here is the use of orderby. When orderby is in
effect all entities are iterated over and cached in memory before being sorted. A close second is a filter that misses all
or most entities in a collection as, again, these filters will cause our method to iterate through all the entities even if
iterpage is used to implement restrictions on the amount of data returned.

If your data source has its own query language then you should consider writing something that translates the OData
query into the query language of your data source. This is the approach taken by the SQL-based examples.

If, on the other hand, your data source doesn’t have a good query language then you could expose it using a minimal
OData implementation (such as the one given here) and then use the same schema to create a SQL-backed service.
Pulling the data from your data source through the API and pushing it into the SQL-backed service would be fairly
trivial and could be done as a periodic synchronization process. This works even better if you have a last modified field
on your entities that you can use to filter out the unchanged ones, as our simple implementation of itervalues won’t
cause the collection to be loaded into memory for a filter alone.

Finally, if periodic synchronization is not good enough to reflect the dynamic nature or your (unqueryable) data source
then you will want to think about some type of intelligent caching to reduce the impact of worst case OData queries.
You might think about simply disabling $orderby and $filter options (which is perfectly OK in OData). You can do
that by overriding the set_orderby () and set_filter () methods, raising NotlmplementedError.

4.2.4 Which DAL Implementation?

Transient Data

If your data is relatively small and transient then you could use the in memory implementation of the DAL API directly.
This is the easiest route to creating a new OData provider as you won’t need to override any of of the implementations.

Look at the example project Sample Project: InMemory Data Service to see how easy it is to create a useful in-memory
key-value store.

SQL

If your data is currently in a SQL database, or if you intend to write a read-only data source and you could easily put
your data into a SQL database, then you should use the Python DB ABI-based implementation as a starting point.

If your data is in a database other than a SQLite database you will have to provide a few tweaks by deriving a new
class from SOLEntityContainer. This can’t be helped, the DB API does a good job at dealing with most issues,
such as variation in parameterization conventions and expected data types, but SQL connection parameters and the
occasional differences in the SQL syntax mean there is likely to be a small amount of work to do.

A look at the customisations required for SOLiteEntityContainer where a handful of methods have had to be
overridden should point the way. You may want to override the default SOLEnt ityCollect ion object too where
functions and operators from the the expression language can be mapped on to parameterized SQL queries.

Once you have a class that can connect to your chosen database move on to A SQL-Backed Data Service.
Customer Provider
Writing a customer provider isn’t as hard as you might think, provided your data set is of a mangeable size then you

can use the built-in behaviour of the base classes to take care of almost all the API’s needs. You just need to expose
the entity values themselves by implementing a couple of methods!

4.2. OData Providers 139

Pyslet Documentation, Release 0.6.20160201

Look at the example project Sample Project: Custom Data Service to see how you can write a simple application that
exposes a download-directory to the web using OData (providing a little more metadata than is easily obtainable from
plain HTTP.)

An OData Proxy

Finally, the OData client implementation of the DAL API opens the possibility of writing an OData proxy server. Why
would you do this?

One of the big challenges for the OData protocol is web-security in the end user’s browser. By supporting JSON over
the wire OData sends out a clear signal that using it directly from a Javascript on a web page should be possible.
But in practice, this only works well for unauthenticated (and hence read-only) OData services. If you want to write
more exciting applications you leave yourself open to all manner of browser-based attacks that could expose your
data to unauthorised bad guys. To mitigate these risks browsers are increasingly locking down the browser to make
it harder for cross-site exploits to happen, which is a good thing. The downside is that it makes it harder for your
web-application to talk to an OData server unless they are both hosted on the same domain.

An OData proxy can be co-located with your application to overcome this problem. A dumb proxy is probably best
implemented by the web-server, rather than a full-blown web application but the classes defined in this package are a
good starting point for writing a more intelligent proxy such as one that checks for a valid session with your application
before proxying the request.

The implementation isn’t trivial because the identities of the entities created by the client (as reported by
get_location ()) are the URLs of the entities as they appear in the remote data service whereas the OData proxy
needs to serve up entities with identities with URLSs that appear under its service root. As a result, you need to create
a copy of the client’s model and implement proxy classes that implement the API by pulling and pushing entities into
the client. This isn’t as much work as it sounds and you probably want to do it anyway so that your proxy can add
value, such as hiding parts of the model that shouldn’t be proxied, adding constraints for authorisation, etc.

I’'m the process of developing a set of proxy classes to act as a good starting point for this type of application. Watch
this space, or reach out to me via the Pyslet home page.

4.3 OData Reference

The basic API for the DAL is defined by the Entity Data Model (EDM) defined in pyslet.odataZ2.csdl,
which is extended by some core OData-specific features defined in pyslet.odataZ.core and
pyslet.odataZ.metadata. With these three modules it is possible to create derived classes that imple-
ment the Data Access Layer API in a variety of different storage scenarios.

4.3.1 Entity Data Model (EDM)

This module defines functions and classes for working with data based on Microsoft’s Entity Data Model (EDM) as
documented by the Conceptual Schema Definition Language and associated file format: http://msdn.microsoft.com/en-
us/library/dd541474.aspx

The classes in this model fall in to two categories. The data classes represent the actual data objects, like simple
and complex values, entities and collections. The metadata classes represent the elements of the metadata model
like entity types, property definitions, associations, entity sets and so on. The metadata elements have direct XML
representations, the data classes do not.

140 Chapter 4. The Open Data Protocol (OData)

https://code.google.com/p/qtimigration/
http://msdn.microsoft.com/en-us/library/dd541474.aspx
http://msdn.microsoft.com/en-us/library/dd541474.aspx

Pyslet Documentation, Release 0.6.20160201

Data Model

class pyslet.odata2.csdl.EntityCollection (entity_set, **kwargs)
Bases: pyslet.odataZ.csdl.DictionaryLike,pyslet.pep8.PEP8Compatibility

Represents a collection of entities from an EntitySet.

To use a database analogy, EntitySet’s are like tables whereas EntityCollections are more like the database
cursors that you use to execute data access commands. An entity collection may consume physical resources
(like a database connection) and so should be closed with the c1lose () method when you’re done.

Entity collections support the context manager protocol in python so you can use them in with statements to
make clean-up easier:

with entity_set.OpenCollection() as collection:
if 42 in collection:
print "Found it!"

The close method is called automatically when the with statement exits.

Entity collections also behave like a python dictionary of Ent ity instances keyed on a value representing the
Entity’s key property or properties. The keys are either single values (as in the above code example) or tuples in
the case of compound keys. The order of the values in the tuple is taken from the order of the PropertyRef
definitions in the metadata model. You can obtain an entity’s key from the Entity. key () method.

When an EntityCollection represents an entire entity set you cannot use dictionary assignment to modify the
collection. You mustuse insert_entity () instead where the reasons for this restriction are expanded on.

For consistency with python dictionaries the following statement is permitted, though it is effectively a no-
operation:

etColl [key]=entity

The above statement raises KeyError if entity is not a member of the entity set. If key does not match the entity’s
key then ValueError is raised.

Although you can’t add an entity with assignment you can delete an entity with the delete operator:

del etColl[key]

Deletes the entity with key from the entity set.

These two operations have a different meaning when a collection represents the subset of entities obtained
through navigation. See NavigationCollection for details.

Notes for data providers

Derived classes MUST call super in their __init__ method to ensure the proper construction of the parent col-
lection class. The proper way to do this is:

class MyCollection (EntityCollection):

def __ _init__ (self,paramhA,paramsB, xxkwargs) :
paramA and paramB are examples of how to consume
private keyword arguments in this method so that they
aren't passed on to the next __init___
super (MyCollection,self).__init__ (x+xkwargs)

All collections require a named entity_set argument, an Ent it ySet instance from which all entities in the
collection are drawn.

Derived classes MUST also override i tervalues (). The implementation of itervalues must return an iterable
object that honours the value of the expand query option, the current filter and the orderby rules.

4.3. OData Reference 141

Pyslet Documentation, Release 0.6.20160201

Derived classes SHOULD also override ___getitem_ () and _ len
are very inefficient, particularly for non-trivial entity sets.

() as the default implementations

Writeable data sources must override py:meth:__delitem__.

If a particular operation is not supported for some data-service specific reason then NotImplementedError must
be raised.

Writeable entity collections SHOULD override clear () as the default implementation is very inefficient.

entity_set = None
the entity set from which the entities are drawn

expand = None
the expand query option in effect

select = None
the select query option in effect

filter = None
a filter or None for no filter (see check_filter())

orderby = None
a list of orderby rules or None for no ordering

skip = None
the skip query option in effect

top = None
the top query option in effect

topmax = None
the provider-enforced maximum page size in effect

inlinecount = None
True if inlinecount option is in effect

The inlinecount option is used to alter the representation of the collection and, if set, indicates that the
__len__ method will be called before iterating through the collection itself.

get_location ()
Returns the location of this collection as a URI instance.

By default, the location is given as the location of the ent i ty_set from which the entities are drawn.

get_title()
Returns a user recognisable title for the collection.

By default this is the fully qualified name of the entity set in the metadata model.

set_expand (expand, select=None)
Sets the expand and select query options for this collection.

The expand query option causes the named navigation properties to be expanded and the associated entities
to be loaded in to the entity instances before they are returned by this collection.

expand is a dictionary of expand rules. Expansions can be chained, represented by the dictionary entry
also being a dictionary:

expand the Customer navigation property...
'Customer': None }

'Customer':None, 'Invoice':None }

#

{

expand the Customer and Invoice navigation properties

{

expand the Customer property and then the Orders property within Customer
{

'Customer': {'Orders':None} }

142 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

The select query option restricts the properties that are set in returned entities. The select option is a similar
dictionary structure, the main difference being that it can contain the single key ‘*’ indicating that all data
properties are selected.

SelectKeys ()
Sets the select rule to select the key property/properties only.

Any expand rule is removed.

expand_entities (entitylterable)
Utility method for data providers.

Given an object that iterates over all entities in the collection, returns a generator function that returns
expanded entities with select rules applied according to expand and select rules.

Data providers should use a better method of expanded entities if possible as this implementation simply
iterates through the entities and calls Entity.Expand () on each one.

set_filter (filter)
Sets the filter object for this collection, see check_filter ().

filter_entities (entitylterable)
Utility method for data providers.

Given an object that iterates over all entities in the collection, returns a generator function that returns only
those entities that pass through the current 71 1 texr object.

Data providers should use a better method of filtering entities if possible as this implementation simply
iterates through the entities and calls check_filter () on each one.

check_filter (entity)
Checks entity against the current filter object and returns True if it passes.

This method is really a placeholder. Filtering is not covered in the CSDL model itself but is a feature of
the OData pyslet.odataZ.core module.

See pyslet.odata2.core.EntityCollectionMixin.check_filter () for more. The im-
plementation in the case class simply raises NotImplementedError if a filter has been set.

set_orderby (orderby)
Sets the orderby rules for this collection.

orderby is a list of tuples, each consisting of:

(an order object as used by :py:meth: calculate_order_key , 1 | -1)

calculate_order_key (entity, orderObject)
Given an entity and an order object returns the key used to sort the entity.

This method is really a placeholder. Ordering is not covered in the CSDL model itself but is a feature of
the OData pyslet.odataZ.core module.

See pyslet.odata2.core.EntityCollectionMixin.calculate_order_key () for
more. The implementation in the case class simply raises NotImplementedError.

order_entities (entitylterable)
Utility method for data providers.

Given an object that iterates over the entities in random order, returns a generator function that returns the
same entities in sorted order (according to the orderby object).

4.3. OData Reference 143

Pyslet Documentation, Release 0.6.20160201

This implementation simply creates a list and then sorts it based on the output of
calculate_order_key () so is not suitable for use with long lists of entities. However, if no
ordering is required then no list is created.

SetInlineCount (inlinecount)
Sets the inline count flag for this collection.

new_entity ()
Returns a new py:class:Entity instance suitable for adding to this collection.

The properties of the entity are set to their defaults, or to null if no default is defined (even if the property
is marked as not nullable).

The entity is not considered to exist until it is actually added to the collection. At this point we deviate
from dictionary-like behaviour, Instead of using assignment you must call insert_entity().:

e=collection.new_entity ()
e["ID"]=1000

e["Name"]="Fred"
assert 1000 not in collection
collection[1000]=e # raises KeyError

The correct way to add the entity is:

collection.insert_entity (e)

The first block of code is prone to problems as the key 1000 may violate the collection’s key allocation
policy so we raise KeyError when assignment is used to insert a new entity to the collection. This is
consistent with the concept behind OData and Atom where new entities are POSTed to collections and the
ID and resulting entity are returned to the caller on success because the service may have modified them
to satisfy service-specific constraints.

CopyEntity (entity)
Creates a new entity copying the value from entity

The key is not copied and is initially set to NULL.

insert_entity (entity)
Inserts entity into this entity set.

After a successful call to insert_entity:
1.entity is updated with any auto-generated values such as an autoincrement correct key.
2.exists is set to True for entity

Data providers must override this method if the collection is writable.

If the call is unsuccessful then entity should be discarded as its associated bindings may be in a misleading
state (when compared to the state of the data source itself).

A general ConstraintError will be raised when the insertion violates model constraints (including
an attempt to create two entities with duplicate keys).

update_entity (entity)
Updates entity which must already be in the entity set.

Data providers must override this method if the collection is writable.

update_bindings (entity)
Iterates through the Entity.NavigationItems () and generates appropriate calls to create/update
any pending bindings.

144 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

Unlike the commit () method, which updates all data and navigation values simultaneously, this method
can be used to selectively update just the navigation properties.

set_page (top, skip=0, skiptoken=None)
Sets the page parameters that determine the next page returned by iterpage ().

The skip and top query options are integers which determine the number of entities returned (top) and the
number of entities skipped (skip).

skiptoken is an opaque token previously obtained from a call to next_skiptoken () on a similar col-
lection which provides an index into collection prior to any additional skip being applied.

TopMax (topmax)
Sets the maximum page size for this collection.

Data consumers should use set_page () to control paging, however data providers can use this method
to force the collection to limit the size of a page to at most topmax entities. When topmax is in force and
is less than the top value set in set_page (), next_skiptoken () will return a suitable value for
identifying the next page in the collection immediately after a complete iteration of i terpage ().

Provider enforced paging is optional, if it is not supported NotImplementedError must be raised.

iterpage (set_next=False)
Returns an iterable subset of the values returned by itervalues ()

The subset is defined by the top, skip and skiptoken values set with set_page ()

If set_next is True then the page is automatically advanced so that the next call to iterpage iterates over the
next page.

Data providers should override this implementation for a more efficient implementation. The default
implementation simply wraps itervalues ().

next_skiptoken ()
Following a complete iteration of the generator returned by iterpage (), this method returns the skip-
token which will generate the next page or None if all requested entities were returned.

itervalues ()
Iterates over the collection.

The collection is filtered as defined by set_filter () and sorted according to any rules defined by
set_orderby ().

Entities are also expanded and selected according to the rules defined by set_expand.

Data providers must override this implementation which, by default, returns no entities (simulating an
empty collection).

class pyslet.odata2.csdl.Entity (entity_set)
Bases: pyslet.odataZ.csdl.TypelInstance

Represents a single instance of an EntityType.

Entity instance must only be created by data providers, a child class may be used with data provider-
specific functionality. ~ Data consumers should use the EntityCollection.new_entity() or
EntityCollection.CopyEntity methods to create instances.

eentity_set is the entity set this entity belongs to

Entity instances extend TypeInstance‘s dictionary-like behaviour to include all properties. As a result the
dictionary values are one of SimpleValue, Complex or py:class:DeferredValue instances.

Property values are created on construction and cannot be assigned directly. To update a simple value use the
value’s SimpleValue.set_from value () method:

4.3. OData Reference 145

Pyslet Documentation, Release 0.6.20160201

e['"Name'] .set_from_value ("Steve™)
update simple property Name
e['Address'] ['City'].set_from_value ("Cambridge")
update City in complex property Address

A simple valued property that is NULL is still a SimpleValue instance, though it will behave as O in tests:

e['Name'] .set_from_value (None) # set to NULL
if e['Name']:
print "Will not print!"

Navigation properties are represented as DeferredValue instances. A deferred value can be opened in a
similar way to an entity set:

open the collection obtained from navigation property Friends
with e['Friends'].OpenCollection() as friends:
iterate through all the friends of entity e
for friend in friends:
print friend['Name']

A convenience method is provided when the navigation property points to a single entity (or None) by definition:

mum=e ['Mother'].GetEntity () # may return None

In the EDM one or more properties are marked as forming the entity’s key. The entity key is unique within the
entity set. On construction, an Entity instance is marked as being ‘non-existent’, exist s is set to False. This
is consistent with the fact that the data properties of an entity are initialised to their default values, or NULL if
there is no default specified in the model. Entity instances returned as values in collection objects have exists
set to True.

Entities from the same entity set can be compared (unlike Comp I ex instances), comparison is done by key ().
Therefore, two instances that represent that same entity will compare equal.

If an entity does not exist, OpenCollection will fail if called on one of its navigation properties with
NonExistentEntity.

You can use IsEntityCollection () to determine if a property will return an EntityCollection
without the cost of accessing the data source itself.

exists =None
whether or not the instance exists in the entity set

selected = None
the set of selected property names or None if all properties are selected

__iter ()
Iterates over the property names, including the navigation properties.

Unlike native Python dictionaries, the order in which the properties are iterated over is defined. The regular
property names are yielded first, followed by the navigation properties. Within these groups properties are
yielded in the order they were declared in the metadata model.

DataKeys ()
Iterates through the names of this entity’s data properties only

The order of the names is always the order they are defined in the metadata model.

data_items ()
Iterator that yields tuples of (key,value) for this entity’s data properties only.

The order of the items is always the order they are defined in the metadata model.

146 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

merge (fromvalue)
Sets this entity’s value from fromvalue which must be a Type Instance instance. In other words, it may
be either an Entity or a Complex value.

There is no requirement that fromvalue be of the same type, but it must be broadly compatible, which is
defined as:

Any named property present in both the current value and fromvalue must be of compatible types.

Any named property in the current value which is not present in fromvalue is left unchanged by this
method.

Null values in fromvalue are not copied.

NavigationKeys ()
Iterates through the names of this entity’s navigation properties only.

The order of the names is always the order they are defined in the metadata model.

NavigationItems ()
Iterator that yields tuples of (key,deferred value) for this entity’s navigation properties only.

The order of the items is always the order they are defined in the metadata model.

CheckNavigationConstraints (ignoreEnd=None)
For entities that do not yet exist, checks that each of the required navigation properties has been bound
(with DeferredValue.BindEntity ()).

If a required navigation property has not been bound then NavigationConstraintError is raised.
If the entity already exists, EntityExists is raised.

For data providers, ignoreEnd may be set to an association set end bound to this entity’s entity set. Any
violation of the related association is ignored.

IsNavigationProperty (name)
Returns true if name is the name of a navigation property, False otherwise.

IsEntityCollection (name)
Returns True if name is the name of a navigation property that points to an entity collection, False other-
wise.

commit ()
Updates this entity following modification.

You can use select rules to provide a hint about which fields have been updated. By the same logic, you
cannot update a property that is not selected!

The default implementation opens a collection object from the parent entity set and calls
EntityCollection.update _entity().

Delete ()
Deletes this entity from the parent entity set.

The default implementation opens a collection object from the parent entity set and uses the del operator.
Data providers must ensure that the entity’s exist s flag is set to False after deletion.

key ()
Returns the entity key as a single python value or a tuple of python values for compound keys.

The order of the values is always the order of the PropertyRef definitions in the associated EntityType’s
key.

4.3. OData Reference 147

Pyslet Documentation, Release 0.6.20160201

set_key (key)
Sets this entity’s key from a single python value or tuple.

The entity must be non-existent or Ent it yExists is raised.

auto_key (base=None)
Sets the key to a random value

base An optional key suggestion which can be used to influence the choice of automatically generated
key.

KeyDict ()
Returns the entity key as a dictionary mapping key property names onto SimpleValue instances.

Expand (expand, select=None)
Expands and selects properties of the entity according to the given expand and select rules (if any).

Data consumers will usually apply expand rules to a collection which will then automatically ensure that
all entities returned by the collection have been expanded.

If, as a result of select, a non-key property is unselected then its value is set to NULL. (Properties that
comprise the key are never NULL.)

If a property that is being expanded is also subject to one or more selection rules these are passed along
with any chained Expand method call.

The selection rules in effect are saved in the select member and can be tested using Selected ().

Selected (name)
Returns true if the property name is selected in this entity.

You should not rely on the value of a unselected property, in most cases it will be set to NULL.

ETag ()
Returns a list of EDM Value instance values to use for optimistic concurrency control or None if the entity
does not support it (or if all concurrency tokens are NULL or unselected).

ETagValues ()
Returns a list of EDM Value instance values that may be used for optimistic concurrency control. The
difference between this method and ETag () is that this method returns all values even if they are NULL
or unselected. If there are no concurrency tokens then an empty list is returned.

generate_ctoken ()
Returns a hash object representing this entity’s value.

The hash is a SHA256 obtained by concatenating the literal representations of all data properties (strings
are UTF-8 encoded) except the keys and properties which have Fixed concurrency mode.

SetConcurrencyTokens ()
A utility method for data providers.

Sets all ETagValues () using the following algorithm:
1.Binary values are set directly from the output of generate ctoken ()
2.String values are set from the hexdigest of the output generate ctoken ()
3.Integer values are incremented.

4.DateTime and DateTimeOffset values are set to the current time in UTC (and nudged by 1s if
necessary)

5.Guid values are set to a new random (type 4) UUID.

Any other type will generate a ValueError.

148 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

ETagIsStrong ()
Returns True if this entity’s etag is a strong entity tag as defined by RFC2616:

A "strong entity tag" MAY be shared by two entities of a
resource only if they are equivalent by octet equality.

The default implementation returns False which is consistent with the implementation of
generate_ctoken () as that does not include the key fields.

class pyslet.odata2.csdl.SimpleValue (pDef=None)
Bases: pyslet.odata2.csdl.EDMValue

An abstract class that represents a value of a simple type in the EDMModel.

This class is not designed to be instantiated directly, use one of the factory methods in EdmValue to construct
one of the specific child classes.

typeCode = None
the SimpleType code

mtype = None
an optional pyslet.http.params.MediaType representing this value

value = None
The actual value or None if this instance represents a NULL value

The python type used for value depends on typeCode as follows:
*Edm.Boolean: one of the Python constants True or False
*Edm.Byte, Edm.SByte, Edm.Int16, Edm.Int32: int
*Edm.Int64: long
*Edm.Double, Edm.Single: python float
*Edm.Decimal: python Decimal instance (from decimal module)
*Edm.DateTime, Edm.DateTimeOffset: py:class:pyslet.iso8601.TimePoint instance

*Edm.Time: py:class:pyslet.iso8601.Time instance (not a Duration, note corrected v2 specification of
OData)

*Edm.Binary: raw string
*Edm.String: unicode string
*Edm.Guid: python UUID instance (from uuid module)

For future compatibility, this attribute should only be updated using set_ from value () or one of the
other related methods.

SimpleCast (typeCode)
Returns a new SimpleValue instance created from rypeCode

The value of the new instance is set using Cast ()

Cast (targetValue)
Updates and returns targetValue a SimpleValue instance.

The value of targetValue is replaced with a value cast from this instance’s value.
If the types are incompatible a TypeError is raised, if the values are incompatible then ValueError is raised.

NULL values can be cast to any value type.

4.3. OData Reference 149

Pyslet Documentation, Release 0.6.20160201

SetFromSimpleValue (new_value)
The reverse of the Cast () method, sets this value to the value of new_value casting as appropriate.

__eq__ (other)
Instances compare equal only if they are of the same type and have values that compare equal.

__unicode__ ()
Formats this value into its literal form.

NULL values cannot be represented in literal form and will raise ValueError.

SetFromLiteral (value)
Decodes a value from the value’s literal form.

You can get the literal form of a value using the unicode function.

set_null ()
Sets the value to NULL

set_from_ value (new_value)
Sets the value from a python variable coercing new_value if necessary to ensure it is of the correct type for
the value’s t ypeCode.

set_random_value (base=None)
Sets a random value based

base a SimpleValue instance of the same type that may be used as a base or stem or the random value
generated or may be ignored, depending on the value type.

classmethod Copy (value)
Constructs a new SimpleValue instance by copying value

class pyslet.odata2.csdl .NumericValue (pDef=None)

Bases: pyslet.odata2.csdl.SimpleValue
An abstract class that represents all numeric simple values.

The literal forms of numeric values are parsed in a two-stage process. Firstly the utility class Parser is used
to obtain a numeric tuple and then the value is set using Set FromNumericLiteral ()

All numeric types may have their value set directly from int, long, float or Decimal.
Integer representations are rounded towards zero using the python int or long functions when necessary.

SetToZero ()
Set this value to the default representation of zero

SetFromNumericLiteral (numericValue)
Decodes a value from a numeric tuple as returned by Parser.ParseNumericLiteral ().

class pyslet.odata2.csdl.FloatValue (pDef=None)

Bases: pyslet.odataZ.csdl.NumericValue
Abstract class that represents one of Edm.Double or Edm.Single.
Values can be set from int, long, float or Decimal.

There is no hard-and-fast rule about the representation of float in Python and we may refuse to accept values
that fall within the accepted ranges defined by the CSDL if float cannot hold them. That said, you won’t have
this problem in practice.

The derived classes SingleValue and DoubleValue only differ in the Max value used when range check-
ing.

Values are formatted using Python’s default unicode conversion.

150

Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

Primitive SimpleTypes

Simple values can be created directly using one of the type-specific classes below.

class pyslet.odata2.csdl.BinaryValue (pDef=None)
Bases: pyslet.odata2.csdl.SimpleValue

Represents a SimpleValue of type Edm.Binary.

Binary literals allow content in the following form:

[A-Fa-f0-9] [A-Fa—-f0-9] «

Binary values can be set from any Python type, though anything other than a binary string is set to its pickled
representation. There is no reverse facility for reading an object from the pickled value.

class pyslet.odata2.csdl.BooleanValue (pDef=None)
Bases: pyslet.odata2.csdl.SimpleValue

Represents a simple value of type Edm.Boolean

Boolean literals are one of:

true | false

Boolean values can be set from their Python equivalents and from any int, long, float or Decimal where the
non-zero test is used to set the value.

class pyslet.odata2.csdl.ByteValue (pDef=None)
Bases: pyslet.odataZ2.csdl.NumericValue

Represents a simple value of type Edm.Byte
Byte literals must not have a sign, decimal point or exponent.
Byte values can be set from an int, long, float or Decimal

class pyslet.odata?2.csdl.DateTimeValue (pDef=None)
Bases: pyslet.odataZ2.csdl.SimpleValue

Represents a simple value of type Edm.DateTime

DateTime literals allow content in the following form:

yyyy-mm—-ddThh:mm[:ss[.f£f£f££££f]]

DateTime values can be set from an instance of 1s08601.TimePoint or type int, long, float or Decimal.

Any zone specifier is ignored. There is no conversion to UTC, the value simply becomes a local time in an
unspecified zone. This is a weakness of the EDM, it is good practice to limit use of the DateTime type to UTC
times.

When set from a numeric value, the value must be non-negative. Unix time is assumed. See the
from_unix_time () factory method of TimePoint for information.

If a property definition was set on construction then the defined precision is used when representing the value
as a unicode string. For example, if the property has precision 3 then the output of the unicode conversion will
appear in the following form:

1969-07-20T20:17:40.000

class pyslet.odata2.csdl .DateTimeOffsetValue (pDef=None)
Bases: pyslet.odata2.csdl.SimpleValue

Represents a simple value of type Edm.DateTimeOffset

4.3. OData Reference 151

Pyslet Documentation, Release 0.6.20160201

DateTimeOffset literals are defined in terms of the XMLSchema lexical representation.

DateTimeOffset values can be set from an instance of 1s08601.TimePoint or type int, long, float or Deci-
mal.

TimePoint instances must have a zone specifier. There is no automatic assumption of UTC.

When set from a numeric value, the value must be non-negative. Unix time in UTC assumed. See the
from unix_time () factory method of TimePoint for information.

If a property definition was set on construction then the defined precision is used when representing the value
as a unicode string. For example, if the property has precision 3 then the output of the unicode conversion will
appear in the following form:

1969-07-20T15:17:40.000-05:00

s

It isn’t completely clear if the canonical representation of UTC using ‘Z’ instead of an offset is intended or

widely supported so we always use an offset:

1969-07-20T20:17:40.000+00:00

class pyslet.odata2.csdl.DecimalValue (pDef=None)
Bases: pyslet.odataZ.csdl.NumericValue

Represents a simple value of type Edm.Decimal

Decimal literals must not use exponent notation and there must be no more than 29 digits to the left and right of
the decimal point.

Decimal values can be set from int, long, float or Decimal values.

class pyslet.odata2.csdl .DoubleValue (pDef=None)
Bases: pyslet.odata2.csdl.FloatValue

Represents a simple value of type Edm.Double

Max = 1.7976931348623157¢e+308
the largest positive double value

This value is set dynamically on module load, theoretically it may be set lower than the maximum allowed
by the specification if Python’s native float is of insufficient precision but this is unlikely to be an issue.

MaxD = Decimal(‘1.79769313486E+308’)
the largest positive double value converted to decimal form

class pyslet.odata2.csdl.GuidValue (pDef=None)
Bases: pyslet.odata2.csdl.SimpleValue

Represents a simple value of type Edm.Guid

Guid literals allow content in the following form: dddddddd-dddd-dddd-dddd-dddddddddddd where each d
represents [A-Fa-f0-9].

Guid values can also be set directly from either binary or hex strings. Binary strings must be of length 16 and
are passed as raw bytes to the UUID constructor, hexadecimal strings can be string or unicode strings and must
be of length 32 characters.

class pyslet.odata2.csdl.Intl6Value (pDef=None)
Bases: pyslet.odata2.csdl.NumericValue

Represents a simple value of type Edm.Int16

class pyslet.odata2.csdl.Int32Value (pDef=None)
Bases: pyslet.odataZ2.csdl.NumericValue

152 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

Represents a simple value of type Edm.Int32

class pyslet.odata2.csdl.Int64Value (pDef=None)
Bases: pyslet.odataZ.csdl.NumericValue

Represents a simple value of type Edm.Int64

class pyslet.odata2.csdl.SByteValue (pDef=None)
Bases: pyslet.odataZ2.csdl.NumericValue

Represents a simple value of type Edm.SByte

class pyslet.odata2.csdl.SingleValue (pDef=None)
Bases: pyslet.odata2.csdl.FloatValue

Represents a simple value of type Edm.Single

Max = 3.4028234663852886¢+38
the largest positive single value

This value is set dynamically on module load, theoretically it may be set lower than the maximum allowed
by the specification if Python’s native float is of insufficient precision but this is very unlikely to be an
issue unless you’ve compiled Python on in a very unusual environment.

MaxD = Decimal(‘3.40282346639E+38)
the largest positive single value converted to Decimal

SetFromNumericLiteral (numericValue)
Decodes a Single value from a Numeric literal.

class pyslet.odata2.csdl.StringValue (pDef=None)
Bases: pyslet.odata2.csdl.SimpleValue

Represents a simple value of type Edm.String”
The literal form of a string is the string itself.
Values may be set from any string or object which supports the native unicode function.

class pyslet.odata2.csdl.TimeValue (pDef=None)
Bases: pyslet.odata2.csdl.SimpleValue

Represents a simple value of type Edm.Time
Time literals allow content in the form:
hh:mm:ss.sss

Time values can be set from an instance of pyslet.iso8601. Time, int, long, float or Decimal and from
datetime.timedelta values.

When set from a numeric value the value must be in the range 0..86399.9 and is treated as an elapsed time in
seconds since midnight.

If a property definition was set on construction then the defined precision is used when representing the value
as a unicode string. For example, if the property has precision 3 then the output of the unicode conversion will
appear in the following form:

20:17:40.000

Complex Types

class pyslet.odata2.csdl.Complex (pDef=None)
Bases: pyslet.odataZ2.csdl.EDMValue, pyslet.odataZ2.csdl.TypeInstance

4.3. OData Reference 153

Pyslet Documentation, Release 0.6.20160201

Represents a single instance of a ComplexType.

IsNull ()
Complex values are never NULL

set_null ()
Sets all simple property values to NULL recursively

merge (new_value)
Sets this value from new_value which must be a Comp 1 ex instance.

There is no requirement that new_value is of the same type, but it must be broadly compatible, which is
defined as:

Any named property present in both the current value and new_value must be of compatible
types.

Any named property in the current value which is not present in new_value is left unchanged by this
method.

Null values are not merged.

Navigation: Deferred Values

class pyslet.odata?2.csdl.DeferredValue (name, from_entity)
Bases: object

Represents the value of a navigation property.

name = None
the name of the associated navigation property

from entity = None
the entity that contains this value

pDef = None
the definition of the navigation property

isRequired = None
True if this deferred value represents a (single) required entity

isCollection = None
True if this deferred value represents a collection

isExpanded = None
True if this deferred value has been expanded.

An expanded navigation property will return a read-only ExpandedEntityCollection when
OpenCollection () is called.

bindings = None
The list of entity instances or keys to bind to from_entity when it is inserted or next updated.

Target ()
Returns the target entity set of this navigation (without opening the collection).

GetEntity ()
Returns a single entity instance or None.

If this deferred value represents an entity collection then NavigationError is raised.

154 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

OpenCollection ()
Opens the collection associated with this navigation property.

Returns an Ent it yCollect ion instance which must be closed when it is no longer needed. This is best
achieved with the Python with statement using the collection’s context-manager behaviour. For example:

with customer['Orders'].OpenCollection() as orders:
do something with the orders

set_expansion_values (values)
Sets the expansion of this deferred value

values A list of Ent ity instances.

No call to the underlying data-layer is made, it is assumed that values is an appropriate representation of
the data that would be obtained by executing:

with self.OpenCollection() as coll:
return coll.values /()

The purpose of this method is to allow the re-use of a value list that has been obtained previously without
having to consult the data source again.

SetExpansion (expandedCollection)
Sets the expansion for this deferred value to the ExpandedEntityCollection given.

If expandedCollection is None then the expansion is removed and future calls to OpenColection ()
will yield a (dynamically created) entity collection.

expand_collection (expand, select)
A convenience function of use to data providers.

Expands this navigation property, further expanding the resulting collection of entities using the given
expand and select options (see EntityCollection. set_expand () for details).

BindEntity (rarget)
Binds a target entity to this navigation property.

target is either the entity you’re binding or its key in the target entity set. For example:

customer['Orders'].bind (1)

binds the entity represented by ‘customer’ to the Order entity with key 1.

Just as for updates to data property values, the binding information is saved and acted upon when the entity
is next updated or, for non-existent entities, inserted into the entity set.

If you attempt to bind to a target entity that doesn’t exist the target entity will be created automatically
when the source entity is updated or inserted.

CheckNavigationConstraint ()
Checks if this navigation property i sRequired and raises NavigationConstraintError ifit has
not been bound with BindEntity ().

This method is only intended to be called on non-existent entities.

update_bindings ()
Iterates through bindings and generates appropriate calls to update the collection.

Unlike the parent Entity’s Entity.commit () method, which updates all data and navigation values
simultaneously, this method can be used to selectively update a single navigation property.

ClearBindings ()
Removes any (unsaved) entity bindings from this navigation property.

. OData Reference 155

Pyslet Documentation, Release 0.6.20160201

class pyslet.odata2.csdl.NavigationCollection (from_entity, name, **kwargs)
Bases: pyslet.odata2.csdl.EntityCollection

Represents the collection of entities returned by a navigation property.

These collections behave in the same way as entity collections opened from the base EntitySet with the
following exceptions:

etColl[key]=entity

Adds a link to entity from the source entity used to open the navigation collection. If key does not match entity‘s
key then ValueError is raised. The entity must already exist and be a member of the base entity set, otherwise
KeyError is raised.

This class is used even if the navigation property is declared to return a single entity, rather than a collection.
In this case assignment will only work if the collection is currently empty. To replace an existing link use
replace().

del etColl[key]
Deletes the link from the source entity to the entity with key. If no such link exists, KeyError is raised.

Thie behaviour differs from the base EntityCollection behaviour where the del operator removes the
entity completely from the entity container. In this case the entity still exists in the parent entity set, only the
link is removed.

Notes for data providers
On construction:

eentity_set is the entity set containing the target entities, the collection behaves like a subset of this en-
tity set. It is passed to super

Named arguments specific to this class:

*from_entity is the source entity being navigated

ename is the name of the navigation property being navigated
Writeable collections must override the __setitem__ () method.

name = None
the name of the navigation property

from entity = None
the source entity

from_end = None
the AssociationSetEnd that represents the source of this association

pDef = None
the navigation property’s definition in the metadata model

insert_entity (entity)
Inserts a new entity into the target entity set and simultaneously creates a link to it from the source entity.

replace (entity)
This method replaces all links with a link to the single item, entity. If the collection was empty then this is
equivalent to __setitem__(entity.key(),entity).

Although for some collections this is equivalent to clear () followed by __setitem__, this method must
be used to combine these operations into a single call when the collection is required to contain exactly
one link at all times.

156 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

class pyslet.odata2.csdl.ExpandedEntityCollection (entityList, **kwargs)
Bases: pyslet.odata2.csdl.NavigationCollection

A special sub-class of NavigationCollection used when a navigation property has been expanded.
An expanded entity collection is a read-only, cached view of the entities linked from the source entity.

Warning: although you may apply a filter and orderby rules to an expanded collection these are evaluated on the
local copy and are not passed to the data source. As a result, there may be differences in the way these options
behave due to different expression semantics.

Note for data providers:

The named argument entityList passed to this constructor is a simple python list of the entities the expanded
collection contains. Internally a dictionary of the entities is built to speed up access by key.

Supporting Classes

class pyslet.odata2.csdl.EDMValue (pDef=None)
Bases: pyslet .pep8.PEP8Compatibility

Abstract class to represent a value in the EDMModel.

This class is used to wrap or ‘box’ instances of a value. In particular, it can be used in a context where that value
can have either a simple or complex type.

pDef = None
An optional Property instance from the metadata model defining this value’s type

__nonzero__ ()
EDM Value instances are treated as being non-zero if TsNull () returns False.

IsNull ()
Returns True if this object is Null.

classmethod NewValue (pDef)
Constructs an instance of the correct child class of EDMVa 1 ue to represent a value defined by Property
instance pDef.

We support a special case for creating a type-less NULL. If you pass None for pDef then a type-less
SipmleValue is instantiated.

classmethod NewSimpleValue (typeCode)
Constructs an instance of the correct child class of EDMValue to represent an (undeclared) simple value
of SimpleType typeCode.

classmethod NewSimpleValueFromValue (value)
Constructs an instance of the correct child class of EDMValue to hold value.

value may be any of the types listed in SimpleValue.

class pyslet.odata2.csdl.TypeInstance (type_def=None)
Bases: pyslet.odataZ.csdl.DictionaryLike, pyslet.pep8.PEP8Compatibility

Abstract class to represents a single instance of a ComplexType or EntityType.

Behaves like a read-only dictionary mapping property names onto £DMVa Il ue instances. (You can change the
value of a property using the methods of EDMVa 1ue and its descendants.)

Unlike regular Python dictionaries, iteration over the of keys in the dictionary (the names of the properties) is
always done in the order in which they are declared in the type definition.

4.3. OData Reference 157

Pyslet Documentation, Release 0.6.20160201

type_def = None
the definition of this type

Metadata Model

class pyslet.odata2.csdl.CSDLElement (parent, name=None)
Bases: pyslet.xmlnames20091208.XMLNSElement
All elements in the metadata model inherit from this class.

class pyslet.odata2.csdl.Schema (parent)
Bases: pyslet.odataZ2.csdl.NameTableMixin, pyslet.odataZ.csdl.CSDLElement

Represents the Edm root element.

Schema instances are based on Name Tab1eMi x1in allowing you to look up the names of declared Associations,
ComplexTypes, EntityTypes, EntityContainers and Functions using dictionary-like methods.

name = None
the declared name of this schema

Association = None
alist of Association instances

ComplexType = None
a list of ComplexType instances

EntityType = None
alist of Ent it yType instances

class pyslet.odata2.csdl.EntityContainer (parent)
Bases: pyslet.odataZ.csdl.NameTableMixin, pyslet.odataZ2.csdl.CSDLEIlement

Models an entity container in the metadata model.

An EntityContainer inherits from NameTablelMixin to enable it to behave like a scope. The EntitySet
instances and AssociationSet instances it contains are declared within the scope.

name = None
the declared name of the container

Documentation = None
the optional Documentation

EntitySet = None
alist of EntitySet instances

AssociationSet = None
alist of AssociationSet instances

find_entitysets (entity_type)
Returns a list of all entity sets with a given type

entity_type An EntityType instance.
Returns an empty list if no declared EntitySets have this type.

class pyslet.odata2.csdl.EntitySet (parent)
Bases: pyslet.odataZ2.csdl.CSDLElement

Represents an EntitySet in the metadata model.

name = None
the declared name of the entity set

158 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

entityTypeName = None
the name of the entity type of this set’s elements

entityType = None
the Ent it yType of this set’s elements

keys = None
a list of the names of this entity set’s keys in their declared order

navigation = None
a mapping from navigation property names to AssociationSetEnd instances

linkEnds = None
A mapping from AssociationSetEnd instances that reference this entity set to navigation property
names (or None if this end of the association is not bound to a named navigation property)

unboundPrincipal = None
An AssociationSetEnd that represents our end of an association with an unbound principal or None
if all principals are bound.

What does that mean? It means that there is an association set bound to us where the other role has a
multiplicity of 1 (required) but our entity type does not have a navigation property bound to the association.
As a result, our entities can only be created by a deep insert from the principal (the entity set at the other
end of the association).

Clear as mud? An example may help. Suppose that each Order entity must have an associated Customer
but (perhaps perversely) there is no navigation link from Order to Customer, only from Customer to Order.
For the Order entity, the Customer is the principal as Orders can only be exist when they are associated
with a Customer.

Attempting to create an Order in the base collection of Orders will always fail:

with Orders.OpenCollection() as collection:
order=collection.new_entity ()
set order fields here
collection.insert_entity (order)
raises ConstraintError as order 1is not bound to a customer

Instead, you have to create new orders from a Customer entity:

with Customers.OpenCollection() as collectionCustomers:

get the existing customer

customer=collectionCustomers['ALFKI'"]

with customer['Orders'] .OpenCollection() as collectionOrders:
create a new order
order=collectionOrders.new_entity ()
... set order details here
collectionOrders.insert_entity (order)

You can also use a deep insert:

with Customers.OpenCollection() as collectionCustomers,
Orders.OpenCollection() as collectionOrders:

customer=collectionCustomers.new_entity ()
set customer details here
order=collectionOrders.new_entity ()
set order details here
customer['Orders'].BindEntity (order)
collectionCustomers.insert_entity (customer)

4.3. OData Reference 159

Pyslet Documentation, Release 0.6.20160201

For the avoidance of doubt, an entity set can’t have two unbound principals because if it did you would
never be able to create entities in it!

Documentation = None
the optional Documentation

GetFQName ()
Returns the fully qualified name of this entity set.

get_location ()
Returns a pyslet.rfc2396. URI instance representing the location for this entity set.

set_location ()
Sets the location of this entity set by resolving a relative path consisting of:

[EntityContainer.name '.'] name

The resolution of URIs is done in accordance with the XML specification, so is affected by any xml:base
attributes set on parent elements or by the original base URI used to load the metadata model. If no base
URI can be found then the location remains expressed in relative terms.

GetKey (keylike)
Extracts a key value suitable for using as a key in an EntityCollection based on this entity set.

Keys are represented as python values (as described in SimpleValue) or as tuples of python values in
the case of compound keys. The order of the values in a compound key is the order in which the Key
properties are defined in the corresponding EntityType definition.

If keylike is already in the correct format for this entity type then it is returned unchanged.

If the key is single-valued and keylike is a tuple containing a single value then the single value is returned
without the tuple wrapper.

If keylike is a dictionary, or an Entity instance, which maps property names to values (or to
SimpleValue instances) the key is calculated from it by extracting the key properties. As a special
case, a value mapped with a dictionary key of the empty string is assumed to be the value of the key
property for an entity type with a single-valued key, but only if the key property’s name is not itself in the
dictionary.

If keylike cannot be turned in to a valid key the KeyError is raised.

extract_key (keyvalue)
Extracts a key value from keylike.

Unlike GetKey, this method attempts to convert the data in keyvalue into the correct format for the key. For
compound keys keyvalue must be a suitable list or tuple or compatible iterable supporting the len method.
Dictionaries are not supported.

If keyvalue cannot be converted into a suitable representation of the key then None is returned.

key_dict (key)
Given a key from this entity set, returns a key dictionary.

The result is a mapping from named properties to SimpleValue instances. The property name is al-
ways used as the key in the mapping, even if the key refers to a single property. This contrasts with
GetKeyDict ().

GetKeyDict (key)
Given a key from this entity set, returns a key dictionary.

The result is a mapping from named properties to SimpleValue instances. As a special case, if a single
property defines the entity key it is represented using the empty string, not the property name.

160 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

bind (entityCollectionBinding, **extraArgs)
Binds this entity set to a specific class or callable used by OpenCollection ()

entityCollectionBinding must be a class (or other callable) that returns an EntityCollection instance,
by default we are bound to the default EntityCollection class which behaves like an empty collection.

extraArgs is a python dict of named arguments to pass to the binding callable

OpenCollection ()
Returns an EntityCollection instance suitable for accessing the entities themselves.

BindNavigation (name, entityCollectionBinding, **extraArgs)
Binds the navigation property name to a class or callable used by OpenNavigation ()

entityCollectionBinding must be a class (or other callable) that returns a NavigationCollection
instance. By default we are bound to the default NavigationCollection class which behaves like an empty
collection.

extraArgs is a python dict of named arguments to pass to the binding callable

OpenNavigation (name, sourceEntity)
Returns a NavigationCollect ion instance suitable for accessing the entities obtained by navigating
from sourceEntity, an Ent ity instance, via the navigation property with name.

NavigationTarget (name)
Returns the target entity set of navigation property name

NavigationMultiplicity (name)
Returns the Multiplicity of both the source and the target of the named navigation property, as a
tuple, for example, if customers is an entity set from the sample OData service:

customers.NavigationMultiplicity['Orders']==(Multiplicity.ZeroToOne,Multiplicitly.Many)

IsEntityCollection (name)
Returns True if more than one entity is possible when navigating the named property.

class pyslet.odata?2.csdl .AssociationSet (parent)
Bases: pyslet.odata2.csdl.CSDLElement

Represents an association set in the metadata model.
The purpose of the association set is to bind the ends of an association to entity sets in the container.
Contrast this with the association element which merely describes the association between entity types.

At first sight this part of the entity data model can be confusing but imagine an entity container that contains
two entity sets that have the same entity type. Any navigation properties that reference this type will need to be
explicitly bound to one or other of the entity sets in the container.

As an aside, it isn’t really clear if the model was intended to be used this way. It may have been
intended that the entity type in the definition of an entity set should be unique within the scope of the
entity container.

name = None
the declared name of this association set

associationName = None
the name of the association definition

association = None
the Association definition

Documentation = None
the optional Documentation

4.3. OData Reference 161

Pyslet Documentation, Release 0.6.20160201

class pyslet.odata2.csdl .AssociationSetEnd (parent)
Bases: pyslet.odata2.csdl.CSDLElement

Represents the links between two actual sets of entities in the metadata model.

The GetQualifiedName () method defines the identity of this element. The built-in Python hash function
returns a hash based on this value and the associated comparison functions are also implemented enabling these
elements to be added to ordinary Python dictionaries.

Oddly, role names are sometimes treated as optional but it can make it a challenge to work out which end of the
association is which when we are actually using the model if one or both are missing. The algorithm we use is
to use role names if either are given, otherwise we match the entity types. If these are also identical then the
choice is arbitrary. To prevent confusion missing role names are filled in when the metadata model is loaded.

name = None
the role-name given to this end of the link

entitySetName = None
name of the entity set this end links to

entity_set = None
EntitySet this end links to

associationEnd = None
AssociationEnd that defines this end of the link

otherEnd = None
the other AssociationSetEnd of this link

Documentation = None
the optional Documentation

GetQualifiedName ()
A utility function to return a qualified name.

The qualified name comprises the name of the parent AssociationSet and the role name.

class pyslet.odata2.csdl. Type (parent)
Bases: pyslet.odataZ.csdl.NameTableMixin, pyslet.odataZ.csdl.CSDLElement

An abstract class for both Entity and Complex types.

Types inherit from Name TableMixin to allow them to behave as scopes in their own right. The named prop-
erties are declared in the type’s scope enabling you so use them as dictionaries to look up property definitions.

Because of the way nested scopes work, this means that you can concatenate names to do a deep look up, for
example, if Person is a defined type:

Person['Address']['City'] is Person|['Address.City']

name = None
the declared name of this type

baseType = None
the name of the base-type for this type

Property = None
alistof Property

GetFQName ()
Returns the full name of this type, including the schema namespace prefix.

class pyslet.odata2.csdl.EntityType (parent)
Bases: pyslet.odata2.csdl. Type

162 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

Models the key and the collection of properties that define a set of Ent ity

Key = None
the Key

ValidateExpansion (expand, select)
A utility method for data providers.

Checks the expand and select options, as described in EntityCollection.set_expand () for va-
lidity raising ValueError if they violate the OData specification.

Specifically the following are checked:
1.That “*” only ever appears as the last item in a select path
2.That nothing appears after a simple property in a select path
3.That all names are valid property names
4.That all expanded names are those of navigation properties

class pyslet.odata2.csdl.Key (parent)
Bases: pyslet.odata2.csdl.CSDLElement

Models the key fields of an EntityType

PropertyRef = None
alistof PropertyRef

class pyslet.odata2.csdl.PropertyRef (parent)
Bases: pyslet.odataZ2.csdl.CSDLElement

Models a reference to a single property within a Key.

name = None
the name of this (key) property

property = None
the Property instance of this (key) property

UpdateTypeRefs (scope, stopOnErrors=False)
Sets property

class pyslet.odata2.csdl.Property (parent)
Bases: pyslet.odataZ2.csdl.CSDLElement

Models a property of an EntityType or ComplexType.

Instances of this class are callable, taking an optional string literal. They return a new EDMVa I ue instance with
a value set from the optional literal or NULL if no literal was supplied. Complex values can’t be created from a
literal.

name = None
the declared name of the property

type = None
the name of the property’s type

simpleTypeCode = None
one of the SimpleType constants if the property has a simple type

complexType = None
the associated ComplexType if the property has a complex type

nullable = None
if the property may have a null value

4.3. OData Reference 163

Pyslet Documentation, Release 0.6.20160201

defaultValue = None
a string containing the default value for the property or None if no default is defined

maxLength = None
the maximum length permitted for property values

fixedLength = None
a boolean indicating that the property must be of length maxLength

precision = None
a positive integer indicating the maximum number of decimal digits (decimal values)

scale = None
a non-negative integer indicating the maximum number of decimal digits to the right of the point

unicode = None
a boolean indicating that a string property contains unicode data

Documentation = None
the optional Documentation

class pyslet.odata2.csdl.ComplexType (parent)
Bases: pyslet.odataZ.csdl. Type

Models the collection of properties that define a Comp 1ex value.
This class is a trivial sub-class of Type

class pyslet.odata2.csdl.NavigationProperty (parent)
Bases: pyslet.odataZ2.csdl.CSDLElement

Models a navigation property of an EntityType.

name = None
the declared name of the navigation property

fromRole = None
the name of this link’s source role

toRole = None
the name of this link’s target role

from_end = None
the AssociationEnd instance representing this link’s source

to_end = None
the AssociationEnd instance representing this link’s target

ambiguous = None
flag set if Association is ambiguous within the parent EntityType, backLink will never be set!

backLink = None
the NavigationProperty that provides the back link (or None, if this link is one-way)

class pyslet.odata2.csdl.Association (parent)
Bases: pyslet.odataZ2.csdl.NameTableMixin, pyslet.odataZ.csdl.CSDLElement

Models an association.

This class inherits from Name TableMixin to enable it to behave like a scope in its own right. The contained
AssociationEnd instances are declared in the association scope by role name.

name = None
the name declared for this association

164 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

Documentation = None
the optional Documentation

AssociationEnd = None
alist of AssociationEnd instances

GetFQName ()
Returns the full name of this association, including the schema namespace prefix.

class pyslet.odata2.csdl.AssociationEnd (parent)
Bases: pyslet.odata2.csdl.CSDLElement

Models one end of an Association.
We define a hash method to allow AssociationEnds to be used as keys in a dictionary.

name = None
the role-name given to this end of the link

type = None
name of the entity type this end links to

entityType = None
EntityType this end links to

multiplicity = None
aMultiplicity constant

otherEnd = None
the other AssociationEnd of this link

GetQualifiedName ()
A utility function to return a qualified name.

The qualified name comprises the name of the parent Association and the role name.

class pyslet.odata2.csdl.Documentation (parent)
Bases: pyslet.odataZ.csdl.CSDLElement

Used to document elements in the metadata model

Misc Definitions
pyslet.odata2.csdl.ValidateSimpleIdentifier (identifier)
Validates a simple identifier, returning the identifier unchanged or raising ValueError.

class pyslet.odata2.csdl.SimpleType
Bases: pyslet.xsdatatypes20041028.Enumeration

SimpleType defines constants for the core data types defined by CSDL

SimpleType.Boolean
SimpleType.DEFAULT == None

For more methods see Enumeration

The canonical names for these constants uses the Edm prefix, for example, “Edm.String”. As a result, the class
has attributes of the form “SimpleType.Edm.Binary” which are inaccessible to python unless getattr is used. To
workaround this problem (and because the Edm. prefix seems to be optional) we also define aliases without
the Edm. prefix. As a result you can use, e.g., SimpleType.Int32 as the symbolic representation in code but the
following are all True:

4.3. OData Reference 165

Pyslet Documentation, Release 0.6.20160201

SimpleType.DecodeValue (u"Edm.Int32")==SimpleType.Int32
SimpleType.DecodeValue (u"Int32")==SimpleType.Int32
SimpleType.EncodeValue (SimpleType.Int32)==u"Edm.Int32"

PythonType = {<type ‘long’>: 7, <type ‘float’>: 8, <type ‘str’>: 14, <type ‘int’>: 13, <type ‘unicode’>: 14, <type ‘bool’>
A python dictionary that maps a type code (defined by the types module) to a constant from this class
indicating a safe representation in the EDM. For example:

SimpleType.PythonType[types.IntTypel==SimpleType.Int64

class pyslet.odata2.csdl.ConcurrencyMode
Bases: pyslet.xsdatatypes20041028.Enumeration

ConcurrencyMode defines constants for the concurrency modes defined by CSDL

ConcurrencyMode.Fixed
ConcurrencyMode .DEFAULT == ConcurrencyMode.none

Note that although ‘Fixed’ and ‘None’ are the correct values lower-case aliases are also defined to allow the
value ‘none’ to be accessible through normal attribute access. In most cases you won’t need to worry as a test
such as the following is sufficient:

if property.concurrencyMode==ConcurrencyMode.Fixed: # do something with concurrency to-
kens

For more methods see Enumeration

pyslet.odata2.csdl.DecodeMaxLength (value)
Decodes a maxLength value from a unicode string.

“The maxLength facet accepts a value of the literal string “max” or a positive integer with value ranging from 1
to 2317

The value ‘max’ is returned as the value MAX

pyslet.odata2.csdl.EncodeMaxLength (value)
Encodes a maxLength value as a unicode string.

pyslet.odata2.csdl.MAX =-1
we define the constant MAX to represent the special ‘max’ value of maxLength

class pyslet.odata2.csdl.Multiplicity
Defines constants for representing association end multiplicities.

pyslet.odata2.csdl.DecodeMultiplicity (src)
Decodes a Multiplicity value from a unicode string.

The valid strings are “0..17, “1” and “*”

pyslet.odata2.csdl.EncodeMultiplicity (value)
Encodes a Multiplicity value as aunicode string.

class pyslet.odata2.csdl.Parser (source)
Bases: pyslet.unicode5.BasicParser

A CSDL-specific parser, mainly for decoding literal values of simple types.

The individual parsing methods may raise ValueError in cases where parsed value has a value that is out of
range.

ParseBinaryLiteral ()
Parses a binary literal, returning a binary string

166 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

ParseBooleanLiteral ()
Parses a boolean literal returning True, False or None if no boolean literal was found.

ParseByteLiteral ()
Parses a byteLiteral, returning a python integer.

We are generous in what we accept, ignoring leading zeros. Values outside the range for byte return None.

ParseDateTimeLiteral ()
Parses a DateTime literal, returning a pyslet.iso8601.TimePoint instance.

Returns None if no DateTime literal can be parsed. This is a generous way of parsing iso8601-like values,
it accepts omitted zeros in the date, such as 4-7-2001.

ParseGuidLiteral ()
Parses a Guid literal, returning a UUID instance from the uuid module.

Returns None if no Guid can be parsed.

ParseNumericLiteral ()
Parses a numeric literal returning a named tuple of strings:

(sign, 1Digits, rDigits, expSign, eDigits)

An empty string indicates a component that was not present except that rDigits will be None if no decimal
point was present. Likewise, eDigits may be None indicating that no exponent was found.

Although both 1Digits and rDigits can be empty they will never both be empty strings. If there are no digits
present then the method returns None, rather than a tuple. Therefore, forms like “E+3” are not treated as
being numeric literals whereas, perhaps oddly, 1E+ is parsed as a numeric literal (even though it will raise
ValueError later when setting any of the numeric value types).

Representations of infinity and not-a-number result in IDigits being set to ‘inf” and ‘nan’ respectively.
They always result in rDigits and eDigits being None.

ParseTimelLiteral ()
Parses a Time literal, returning a pyslet.iso08601. Time instance.

Returns None if no Time literal can be parsed. This is a generous way of parsing iso8601-like values, it
accepts omitted zeros in the leading field, such as 7:45:00.

Utility Classes
These classes are not specific to the EDM but are used to support the implementation. They are documented to allow
them to be reused in other modules.

class pyslet.odata?2.csdl.NameTableMixin
Bases: pyslet.odata2.csdl.DictionaryLike

A mix-in class to help other objects become named scopes.

Using this mix-in the class behaves like a read-only named dictionary with string keys and object values. If the
dictionary contains a value that is itself a NameTableMixin then keys can be compounded to look-up items in
sub-scopes.

For example, if the name table contains a value with key “X” that is itself a name table containing a value with
key “Y” then both “X” and “X.Y” are valid keys, the latter performing a ‘deep lookup’ in the nested scope.

name = None
the name of this name table (in the context of its parent)

4.3. OData Reference 167

Pyslet Documentation, Release 0.6.20160201

nameTable = None
a dictionary mapping names to child objects

__getitem__ (key)
Looks up key in nameTable and, if not found, in each child scope with a name that is a valid scope
prefix of key. For example, if key is “My.Scope.Name” then a child scope with name “My.Scope” would
be searched for “Name” or a child scope with name “My” would be searched for “Scope.Name”.

__iter_ ()
Yields all keys defined in this scope and all compounded keys from nested scopes. For example, a child
scope with name “My.Scope” which itself has a child “Name” would generate two keys: “My.Scope” and
“My.Scope.Name”.

len_ ()
Returns the number of keys in this scope including all compounded keys from nested scopes.

Declare (value)
Declares a value in this named scope.

value must have a name attribute which is used to declare it in the scope; duplicate keys are not allowed
and will raise DuplicateKey.

I3

Values are always declared in the top-level scope, even if they contain the compounding character ‘.,
however, you cannot declare “X” if you have already declared “X.Y” and vice versa.

Undeclare (value)
Removes a value from the named scope.

Values can only be removed from the top-level scope.

class pyslet.odata2.csdl.DictionaryLike
Bases: object

An abstract class for behaving like a dictionary.

Derived classes must override _ _iter () and _ getitem () and if the dictionary is writable
__setitem__ () and probably _ delitem__ () too. These methods all raise NotImplementedError by
default.

Dervied classes should also override ___1en () and clear () as the default implementations are inefficient.

A note on thread safety. Unlike native Python dictionaries, DictionaryLike objects can not be treated as thread
safe for updates. The implementations of the read-only methods (including the iterators) are designed to be
thread safe so, once populated, they can be safely shared. Derived classes should honour this contract when
implementing ___iter_ (), getitem () and___Ilen__ () or clearly document that the object is not
thread-safe at all.

Finally, one other difference worth noting is touched on in a comment from the following question on Stack
Overflow: http://stackoverflow.com/questions/3358770/python-dictionary-is-thread-safe

This question is about whether a dictionary can be modified during iteration. Although not typically a thread-
safety issue the commenter says:

I think they are related. What if one thread iterates and the other modifies the dict?

To recap, native Python dictionaries limit the modifications you can make during iteration, quoting from the
docs:

The dictionary p should not be mutated during iteration. It is safe (since Python 2.1) to modify the
values of the keys as you iterate over the dictionary, but only so long as the set of keys does not
change

168 Chapter 4. The Open Data Protocol (OData)

http://stackoverflow.com/questions/3358770/python-dictionary-is-thread-safe

Pyslet Documentation, Release 0.6.20160201

You should treat DictionaryLike objects with the same respect but the behaviour is not defined at this abstract
class level and will vary depending on the implementation. Derived classes are only dictionary-like, they are not
actually Python dictionaries!

__getitem__ (key)
Implements self[key]

This method must be overridden to make a concrete implementation

__setitem__ (key, value)
Implements assignment to self[key]

This method must be overridden if you want your dictionary-like object to be writable.

__delitem__ (key)
Implements del self[key]

This method should be overridden if you want your dictionary-like object to be writable.

__iter ()
Returns an object that implements the iterable protocol on the keys

This method must be overridden to make a concrete implementation

len_ ()
Implements len(self)

The default implementation simply counts the keys returned by __iter__ and should be overridden with a
more efficient implementation if available.

__contains__ (key)
Implements: key in self

The default implementation uses __getitem__ and returns False if it raises a KeyError.

iterkeys ()
Returns an iterable of the keys, simple calls __iter___

itervalues ()
Returns an iterable of the values.

The default implementation is a generator function that iterates over the keys and uses __getitem___ to yield
each value.

keys ()
Returns a list of keys.

This is a copy of the keys in no specific order. Modifications to this list do not affect the object. The default
implementation uses iterkeys ()

values ()
Returns a list of values.

This is a copy of the values in no specific order. Modifications to this list do not affect the object. The
default implementation uses i tervalues ().

iteritems ()
Returns an iterable of the key,value pairs.

The default implementation is a generator function that uses ___iter () and __getitem__ to yield the
pairs.

items ()
Returns a list of key,value pair tuples.

4.3.

OData Reference 169

Pyslet Documentation, Release 0.6.20160201

This is a copy of the items in no specific order. Modifications to this list do not affect the object. The
default implementation uses iteritems.

has_key (key)
Equivalent to: key in self

get (key, default=None)
Equivalent to: self[key] if key in self else default.

Implemented using __getitem__

setdefault (key, value=None)
Equivalent to: self[key] if key in self else value; ensuring self[key]=value

Implemented using __getitem__ and __setitem__.

pop (key, value=None)
Equivalent to: self[key] if key in self else value; ensuring key not in self.

Implemented using __getitem__ and __delitem__.

clear ()
Removes all items from the object.

The default implementation uses keys () and deletes the items one-by-one with __delitem__. It does this
to avoid deleting objects while iterating as the results are generally undefined. A more efficient implemen-
tation is recommended.

popitem ()
Equivalent to: self[key] for some random key; removing key.

This is a rather odd implementation but to avoid iterating over the whole object we create an iterator with
__iter__, use __getitem__ once and then discard it. If an object is found we use __delitem__ to delete it,
otherwise KeyError is raised.

bigclear ()
Removes all the items from the object (alternative for large dictionary-like objects).

This is an alternative implementation more suited to objects with very large numbers of keys. It uses
popitem () repeatedly until KeyError is raised. The downside is that popitem creates (and discards) one
iterator object for each item it removes. The upside is that we never load the list of keys into memory.

copy ()
Makes a shallow copy of this object.

This method must be overridden if you want your dictionary-like object to support the copy operation.

update (items)
Iterates through ifems using __setitem__ to add them to the set.

___weakref
list of weak references to the object (if defined)

Exceptions
class pyslet.odata2.csdl.NonExistentEntity
Bases: pyslet.odataZ2.csdl.EDMError

Raised when attempting to perform a restricted operation on an entity that doesn’t exist yet. For example, getting
the value of a navigation property.

170 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

class pyslet.odata2.csdl.EntityExists
Bases: pyslet.odata2.csdl.EDMError

Raised when attempting to perform a restricted operation on an entity that already exists. For example, inserting
it into the base collection.

class pyslet.odata2.csdl.ConstraintError
Bases: pyslet.odata2.csdl.EDMError

General error raised when a constraint has been violated.

class pyslet.odata2.csdl.NavigationError
Bases: pyslet.odataZ.csdl.ConstraintError

Raised when attempting to perform an operation on an entity and a violation of a navigation property’s relation-
ship is encountered. For example, adding multiple links when only one is allowed or failing to add a link when
one is required.

class pyslet.odata2.csdl.ConcurrencyError
Bases: pyslet.odataZ.csdl.ConstraintError

Raised when attempting to perform an update on an entity and a violation of a concurrency control constraint is
encountered.

class pyslet.odata2.csdl.ModelIncomplete
Bases: pyslet.odata2.csdl.ModelError

Raised when a model element has a missing reference.
For example, an Ent itySet that is bound to an undeclared :EntityType.

class pyslet.odata2.csdl .ModelConstraintError
Bases: pyslet.odata2.csdl.ModelError

Raised when an issue in the model other than completeness prevents an action being performed.
For example, an entity type that is dependent on two unbound principals (so can never be inserted).

class pyslet.odata2.csdl.DuplicateName
Bases: pyslet.odata2.csdl.ModelError

Raised by NameTableMixin when attempting to declare a name in a context where the name is already
declared.

This might be raised if your metadata document incorrectly defines two objects with the same name in the same
scope, for example

class pyslet.odata2.csdl.IncompatibleNames
Bases: pyslet.odata2.csdl.DuplicateName

A special type of DuplicateName exception raised by NameTableMixin when attempting to declare a
name which might hide, or be hidden by, another name already declared.

CSDL’s definition of Simpleldentifier allows ‘" to be used in names but also uses it for qualifying names. As
a result, it is possible to define a scope with a name like “My.Scope” which precludes the later definition of a
scope called simply “My” (and vice versa).

class pyslet.odata2.csdl.InvalidMetadataDocument
Bases: pyslet.odata2.csdl.ModelError

Raised by general CSDL model violations.

class pyslet.odata2.csdl.EDMError
Bases: exceptions.Exception

4.3. OData Reference 171

Pyslet Documentation, Release 0.6.20160201

General exception for all CSDL model errors.

Constants

pyslet.odata2.csdl.EDM_NAMESPACE = ‘http://schemas.microsoft.com/ado/2009/11/edm’

Namespace to use for CSDL elements

4.3.2 OData Core Classes

This module extends the definitions in pyslet.odataZ. csdl with OData-specific functions and classes. In most
cases you won’t need to worry about which layer of the model a definition belongs to. Where a class is derived from
one in the parent EDM the same name is used, therefore most of the time you should look to include items from the
core module rather than from the base csdl module.

Data Model

class pyslet.odata?2.core.EntityCollection (entity_set, **kwargs)

Bases: pyslet.odata2.csdl.EntityCollection
EntityCollections that provide OData-specific options

Our definition of EntityCollection is designed for use with Python’s diamond inheritance model. We inherit di-
rectly from the basic pyslet.odataZ.csdl.EntityCollection object, providing additional methods
that support the expression model defined by OData, media link entries and JSON encoding.

get_next_page_location ()
Returns the location of this page of the collection

The resultis a r£c2396.URI instance.

new_entity ()
Returns an OData aware instance

is_medialink_collection()
Returns True if this is a collection of Media-Link Entries

new_stream (src, sinfo=None, key=None)
Creates a media resource.

src A file-like object from which the stream’s data will be read.

sinfo A St reamInfo objectcontaining metadata about the stream. If the size field of sinfo is set then at
most sinfo.size bytes are read from src. Otherwise src is read until the end of the file.

key The key associated with the stream being written. This value is taken as a suggestion for the key to
use, its use is not guaranteed. The key actually used to store the stream can be obtained from the
resulting entity.

Returns the media-link entry Ent ity

update_stream (src, key, sinfo=None)
Updates an existing media resource.

The parameters are the same as new_stream () except that the key must be present and must be an
existing key in the collection.

read_stream (key, out=None)
Reads a media resource.

172

Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

key The key associated with the stream being read.

out An optional file like object to which the stream’s data will be written. If no output file is provided
then no data is written.

The return result is the St reamInfo class describing the stream.

read_stream_close (key)
Creates a generator for a media resource.

key The key associated with the stream being read.

The return result is a tuple of the St reamInfo class describing the stream and a generator that yields the
stream’s data.

The collection is closed by the generator when the iteration is complete (or when the generator is de-
stroyed).

check_filter (entity)
Checks entity against any filter and returns True if it passes.

The filter object must be an instance of py:class:CommonExpression that returns a Boolean value.
boolExpression is a CommonExpression.

calculate_order_key (entity, orderObject)
Evaluates orderObject as an instance of py:class: CommonExpression.

generate_entity_ set_in_json (version=2)
Generates JSON serialised form of this collection.

generate_link_coll_json (version=2)
Generates JSON serialised collection of links

class pyslet.odata2.core.Entity (entity_set)
Bases: pyslet.odata2.csdl.Entity

We override Entity in order to provide OData serialisation.

set_from_json_object (0bj, entity_resolver=None, for_update=False)
Sets the value from a JSON representation.

obj A python dictionary parsed from a JSON representation

entity_resolver An optional callable that takes a URI object and returns the entity object it points to. This
is used for resolving links when creating or updating entities from a JSON source.

for_update An optional boolean (defaults to False) that indicates if an existing entity is being deserialised
for update or just for read access. When True, new bindings are added to the entity for links provided
in the obj. If the entity doesn’t exist then this argument is ignored.

generate_entity type_in_json (for_update=False, version=2)
Returns a JSON-encoded string representing this entity

for_update A boolean, defaults to False, indicating that the output JSON should include any unsaved
bindings
version Defaults to version 2 output

link_json ()
Returns a JSON-serialised link to this entity

class pyslet.odata2.core.StreamInfo (type=MediaType(‘application’, ‘octet-stream’, {}), cre-

ated=None, modified=None, size=None)
Bases: object

4.3. OData Reference 173

Pyslet Documentation, Release 0.6.20160201

Represents information about a media resource stream.

type = None
the media type, a MediaType instance

created = None
the optional creation time, a fully specified TimePoint instance that includes a zone

modified = None
the optional modification time, a fully specified TimePoint instance that includes a zone

size = None
the size of the stream (in bytes), None if not known

md5 = None
the 16 byte binary MD35 checksum of the stream, None if not known

Navigation: Deferred Values

class pyslet.odata?2.core.NavigationCollection (from_entity, name, **kwargs)
Bases: pyslet.odata2.core.EntityCollection,pyslet.odataZ2.csdl.NavigationCollection

NavigationCollections that provide OData-specific options.

This class uses Python’s diamond inheritance model

csdl.EntityCollection
A%

csdl.NavigationCollection

core.EntityCollection
core.NavigationCallection

This allows us to inherit from both the OData-specific form of EntityCollection and NavigationCollection. This
is illustrated in the above diagram which shows the method resolution order reading from the bottom of the
diagram. The default object is omitted.

This technique is repeated in specific implementations of the API where common collection behaviour is im-
plemented in a class that inherits from EntityCollection and then mixed in to a new class derived from
NavigationCollection.

expand_collection ()
Return an expanded version of this collection

Returns an instance of an OData-specific ExpandedEntityCollection.

get_location ()
Returns the location of this collection as a r£c2396 . URI instance.

We override the location based on the source entity set + the fromKey.

class pyslet.odata?2.core.ExpandedEntityCollection (entityList, **kwargs)
Bases: pyslet.odataZ.core.EntityCollection,pyslet.odataZ2.csdl.ExpandedEntityCollection

Expanded collections with OData-specific behaviour.

This class uses diamond inheritance in a similar way to NavigationCollection

174 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

4.3.3 OData Metadata Classes

This module defines sub-classes of those defined in the EDM that include special handling of the OData defined
metadata attributes.

EDM Elements

Feed Customisation

class pyslet.odata2.metadata.EntityType (parent)
Bases: pyslet.odata2.csdl.EntityType, pyslet.odataZ.metadata.FeedCustomisationMixin

Supports feed customisation behaviour of EntityTypes

get_source_path/()
Returns the source path

This result is read from the FC_SourcePath attribute. It is a list of property names that represents a path
into the entity or None if there is no source path set.

has_stream()
Returns true if this is a media link resource.

Read from the HasStream attribute. The default is False.

class pyslet.odata?2.metadata.Property (parent)
Bases: pyslet.odataZ.csdl.Property,pyslet.odataZ.metadata.FeedCustomisationMixin

Supports feed customisation behaviour of Properties

get_mime_type ()
Returns the media type of a property

The result is read from the MimeType attribute. It is a Media Type instance or None if the attribute is not
defined.

class pyslet.odata2.metadata.FeedCustomisationMixin
Bases: object

Utility class used to add common feed customisation attributes

get_target_path()
Returns the target path for an element

The result is a list of qualified element names, that is, tuples of (namespace,name). The last name may
start with ‘@’ indicating an attribute rather than an element.

Feed customisations are declared using the FC_TargetPath attribute. Returns None if there is no target path
declared.

keep_in_content ()
Returns true if a property value should be kept in the content

This is indicated with the FC_KeepInContent attribute. If the attribute is missing then False is returned, so
properties with custom paths default to being omitted from the properties list.

get_fc _ns_prefix()
Returns the custom namespace mapping to use.

The value is read from the FC_NsPrefix attribute. The result is a tuple of: (prefix, namespace uri).

If no mapping is specified then (None,None) is returned.

4.3. OData Reference 175

Pyslet Documentation, Release 0.6.20160201

Entity Containers

class pyslet.odata2.metadata.EntityContainer (parent)
Bases: pyslet.odata2.csdl.EntityContainer

Supports OData’s concept of the default container.

is_default_entity container ()
Returns True if this is the default entity container

The value is read from the IsDefaultEntityContainer attribute. The default is False.

class pyslet.odata?2.metadata.EntitySet (parent)
Bases: pyslet.odataZ.csdl.EntitySet

set_location ()
Overridden to add support for the default entity container

By default, the path to an EntitySet includes the name of the container it belongs to, e.g., My-
Database.MyTable. This implementation checks to see if we in the default container and, if so, omits
the container name prefix before setting the location URI.

EDMX Elements
class pyslet.odata?2.metadata.Document (**args)
Bases: pyslet.odata2.edmx.Document
Class for working with OData-specific metadata documents.
Adds namespace prefix declarations for the OData metadata and OData dataservices namespaces.

classmethod get_element_class (name)
Returns the class used to represent an element.

Overrides get _element_class () touse the OData-specific implementations of the edmx/csdl classes
defined in this module.

validate ()
Validates any declared OData extensions

Checks many of the requirements given in the specification and raises TnvalidMetadataDocument
if the tests fail.

Returns the data service version required to process the service or None if no data service version is
specified.

class pyslet.odata2.metadata.DataServices (parent)
Bases: pyslet.odata2.edmx.DataServices

Adds OData specific behaviour

defaultContainer = None
the default entity container

data_services_version ()
Returns the data service version

Read from the DataService Version attribute. Defaults to None.

search_containers (name)
Returns an entity set or service operation with name

name must be of the form:

176 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

[<entity container>.]<entity set, function or operation name>

The entity container must be present unless the target is in the default container in which case it must not
be present.

If name can’t be found KeyError is raised.

4.3.4 OData Client
Overview

Warning: this client doesn’t support certificate validation when accessing servers through https URLs. This feature is
coming soon...

Using the Client

The client implementation uses Python’s logging module to provide logging, when learning about the client it may
help to turn logging up to “INFO” as it makes it clearer what the client is doing. “DEBUG” would show exactly what
is passing over the wire.:

>>> import logging
>>> logging.basicConfig(level=logging.INFO)

To create a new client simply instantiate a Client object. You can pass the URL of the service root you wish to connect
to directly to the constructor which will then call the service to download the list of feeds and the metadata document
from which it will set the C1ient.model.

>>> from pyslet.odata2.client import Client

>>> c=Client ("http://services.odata.org/V2/Northwind/Northwind.svc/")
INFO:root:Sending request to services.odata.org

INFO:root:GET /V2/Northwind/Northwind.svc/ HTTP/1.1
INFO:root:Finished Response, status 200

INFO:root:Sending request to services.odata.org

INFO:root:GET /V2/Northwind/Northwind.svc/Smetadata HTTP/1.1
INFO:root:Finished Response, status 200

>>>

The Client. feeds attribute is a dictionary mapping the exposed feeds (by name) onto EntitySet instances.
This makes it easy to open the feeds as EDM collections. In your code you’d typically use the with statement when
opening the collection but for clarity we’ll continue on the python command line:

>>> products=c.feeds['Products'].OpenCollection ()
>>> for p in products: print p

INFO:root:Sending request to services.odata.org
INFO:root:GET /V2/Northwind/Northwind.svc/Products HTTP/1.1
INFO:root:Finished Response, status 200
1
2
3
[and so on]
20
INFO:root:Sending request to services.odata.org

INFO:root:GET /V2/Northwind/Northwind.svc/Products?$skiptoken=20 HTTP/1.1
INFO:root:Finished Response, status 200

4.3. OData Reference 177

Pyslet Documentation, Release 0.6.20160201

21
22
23
[and so on]
76
77
>>>

Note that products behaves like a dictionary, iterating through it iterates through the keys in the dictionary. In this
case these are the keys of the entities in the collection of products. Notice that the client logs several requests to the
server interspersed with the printed output. Subsequent requests use $skiptoken because the server is limiting the
maximum page size. These calls are made as you iterate through the collection allowing you to iterate through very
large collections.

The keys alone are of limited interest, let’s try a similar loop but this time we’ll print the product names as well:

>>> for k,p in products.iteritems(): print k,p['ProductName'].value

INFO:root:Sending request to services.odata.org
INFO:root:GET /V2/Northwind/Northwind.svc/Products HTTP/1.1
INFO:root:Finished Response, status 200

1 Chai

2 Chang

3 Aniseed Syrup

20 Sir Rodney's Marmalade

INFO:root:Sending request to services.odata.org

INFO:root:GET /V2/Northwind/Northwind.svc/Products?$skiptoken=20 HTTP/1.1
INFO:root:Finished Response, status 200

21 Sir Rodney's Scones

22 Gustaf's Kndckebrod

23 Tunnbrod

76 Lakkalikoori
77 Original Frankfurter griine SoBe
>>>

Sir Rodney’s Scones sound interesting, we can grab an individual record in the usual way:

>>> scones=products[21]

INFO:root:Sending request to services.odata.org

INFO:root :GET /V2/Northwind/Northwind.svc/Products (21) HTTP/1.1
INFO:root:Finished Response, status 200

>>> for k,v in scones.data_items(): print k,v.value

ProductID 21

ProductName Sir Rodney's Scones
SupplierID 8

CategoryID 3

QuantityPerUnit 24 pkgs. x 4 pieces
UnitPrice 10.0000

UnitsInStock 3

UnitsOnOrder 40

ReorderLevel 5

Discontinued False

>>>

178 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

Well, I've simply got to have some of these, let’s use one of the navigation properties to load information about the

supplier:

>>> supplier=scones|['Supplier'].GetEntity ()

INFO:root:Sending request to services.odata.org

INFO:root:GET /V2/Northwind/Northwind.svc/Products (21)/Supplier HTTP/1.1
INFO:root:Finished Response, status 200

>>> for k,v in supplier.data_items(): print k,v.value

SupplierID 8

CompanyName Specialty Biscuits, Ltd.
ContactName Peter Wilson
ContactTitle Sales Representative
Address 29 King's Way

City Manchester

Region None

PostalCode M14 GSD

Country UK

Phone (161) 555-4448

Fax None

HomePage None

Attempting to load a non existent entity results in a KeyError of course:

>>> p=products[211]
INFO:root:Sending request to services.odata.org
INFO:root :GET /V2/Northwind/Northwind.svc/Products (211) HTTP/1.1
INFO:root:Finished Response, status 404
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Library/Python/2.7/site-packages/pyslet/odata2/client.py", line 165, in
raise KeyError (key)
KeyError: 211

__getit

Finally, when we’re done, it is a good idea to close the open collection:

>>> products.close ()

Reference

class pyslet.odata2.client .Client (serviceRoot=None, **kwargs)
Bases: pyslet.rfc5023.Client

An OData client.

Can be constructed with an optional URL specifying the service root of an OData service. The URL is passed

directly to LoadService ().

service = None
apyslet.rfc5023.Service instance describing this service

feeds = None
a dictionary of feed titles, mapped to csdl.EntitySet instances

model = None
ametadata.Edmx instance containing the model for the service

LoadService (serviceRoot, metadata=None)
Configures this client to use the service at serviceRoot

4.3. OData Reference

179

em

Pyslet Documentation, Release 0.6.20160201

serviceRoot A string or pyslet.rfc2396.URT instance. The URI may now point to a local file
though this must have an xml:base attribute to point to the true location of the service as calls to the
feeds themselves require the use of http(s).

metadata (None) A pyslet.rfc2396.URI instance pointing to the metadata file. This is usually
derived automatically by adding $metadata to the service root but some services have inconsistent
metadata models. You can download a copy, modify the model and use a local copy this way instead,
e.g., by passing something like:

URI.from_path('metadata.xml")

If you use a local copy you must add an xml:base attribute to the root element indicating the true
location of the $metadata file as the client uses this information to match feeds with the metadata
model.

Exceptions

class pyslet.odata2.client.ClientException
Bases: exceptions.Exception
Base class for all client-specific exceptions.

class pyslet.odata2.client .AuthorizationRequired
Bases: pyslet.odataZ2.client.ClientException

The server returned a response code of 401 to the request.

class pyslet.odata2.client .UnexpectedHTTPResponse
Bases: pyslet.odataZ2.client.ClientException

The server returned an unexpected response code, typically a 500 internal server error. The error message
contains details of the error response returned.

4.3.5 An In-Memory Data Service

4.3.6 SQL Database-based Data Services
This module defines a general (but abstract) implementation of the EDM-based data-access-layer (DAL) using
Python’s DB API: http://www.python.org/dev/peps/pep-0249/

It also contains a concrete implementation derived from the above that uses the standard SQLite module for storage.
For more information about SQLite see: http://www.sqlite.org/

Data Access Layer API

Entity Containers

There are primarily two use cases here:

1. Create a derived class of SOLEnt ityContainer to provide platform specific modifications to the way SQL
queries are constructed and database connections are created and managed.

2. Create a derived class of SOLEntityContainer to provide modified name mappings for a specific database
and metadata model.

180 Chapter 4. The Open Data Protocol (OData)

http://www.python.org/dev/peps/pep-0249/
http://www.sqlite.org/

Pyslet Documentation, Release 0.6.20160201

These two use cases can be supported through multiple (diamond) inheritance. This makes it easier for you to separate
the code required. In practice, implementations for different database platforms are likely to be shared (perhaps as part
of future releases of Pyslet itself) whereas modifications to the name mangler to map this API to an existing database
will be project specific.

For example, to achieve platform specific modifications you’ll override SQLEntityContainer and provide new imple-
mentations for methods such as SOLEntityContainer.get_collection_class():

class MyDBContainer (SQLEntityContainer) :

def get_collection_class(self):
return MyDBEntityCollection

To achieve modified property name mappings you’ll override SQLEntityContainer and provide new implementations
for methods such as SQLEntityContainer.mangle_name ():

class SouthwindDBContainer (SQLEntityContainer) :

def mangle_name (self, source_path):
do some custom name mangling here....

Normally, you’ll want to achieve both use cases, so to actually instantiate your database you’ll select the container class
that represents the database platform and then combine it with the class that contains your data-specific modifications:

import MyDB, Southwind

easy to configure constants at the top of your script
DBCONTAINER_CLASS=MyDB.MyDBContainer
DBCONTAINER_ARGS={

'username' :"southwind",

'password':"password"

}

MAX_CONNECTIONS=100

class SouthwindDB (Southwind.SouthwindDBContainer, DBCONTAINER_CLASS) :

pass

.... load the metadata from disk and then do something like this

db=SouthwindDB (container=SouthwindMetadata, max_connections=MAX_CONNECTIONS, »+*DBCONTAINEHR

class pyslet.odata?2.sqglds.SQLEntityContainer (container, dbapi, stream-
store=None, max_connections=10,
field_name_joiner=u’_’, max_idle=None,
*rewargs)

Bases: object

Object used to represent an Entity Container (aka Database).
Keyword arguments on construction:

container The EntityContainer that defines this database.

streamstore An optional St reamSt ore that will be used to store media resources in the container. If absent,
media resources actions will generate NotImplementedError.

dbapi The DB API v2 compatible module to use to connect to the database.

This implementation is compatible with modules regardless of their thread-safety level (provided they
declare it correctly!).

4.3. OData Reference 181

_ARGS)

Pyslet Documentation, Release 0.6.20160201

max_connections (optional) The maximum number of connections to open to the database. If your program
attempts to open more than this number (defaults to 10) then it will block until a connection becomes
free. Connections are always shared within the same thread so this argument should be set to the expected
maximum number of threads that will access the database.

If using a module with thread-safety level 0 max_connections is ignored and is effectively 1, so use of the
API is then best confined to single-threaded programs. Multi-threaded programs can still use the API but
it will block when there is contention for access to the module and context switches will force the database
connection to be closed and reopened.

field_name_joiner (optional) The character used by the name mangler to join compound names, for exam-
ple, to obtain the column name of a complex property like “Address/City”. The default is “_”, re-
sulting in names like “Address_City” but it can be changed here. Note: all names are quoted using
quote_identifier () before appearing in SQL statements.

max_idle (optional) The maximum number of seconds idle database connections should be kept open before
they are cleaned by the pool_cleaner (). The default is None which means that the pool_cleaner never
runs. Any other value causes a separate thread to be created to run the pool cleaner passing the value of the
parameter each time. The frequency of calling the pool_cleaner method is calculated by dividing max_idle
by 5, but it never runs more than once per minute. For example, a setting of 3600 (1 hour) will result in a
pool cleaner call every 12 minutes.

This class is designed to work with diamond inheritance and super. All derived classes must call __init__
through super and pass all unused keyword arguments. For example:

class MyDBContainer:
def _ init__ (self,myDBConfig, xxkwargs) :
super (MyDBContainer,self) .__init__ (x*kwargs)
do something with myDBConfig....

streamstore = None
the EntityContainer

dbapi = None
the optional St reamStore

module_lock = None
the DB API compatible module

fk_table =None
A mapping from an entity set name to a FK mapping of the form:

{<association set end>: (<nullable flag>, <unique keys flag>),...}

The outer mapping has one entry for each entity set (even if the corresponding foreign key mapping is
empty).
Each foreign key mapping has one entry for each foreign key reference that must appear in that entity set’s

table. The key is an AssociationSetEnd that is bound to the entity set (the other end will be bound
to the target entity set). This allows us to distinguish between the two ends of a recursive association.

aux_table = None
A mapping from the names of symmetric association sets to a tuple of:

(<entity set A>, <name prefix A>, <entity set B>,
<name prefix B>, <unique keys>)

mangled_names = None
A mapping from source path tuples to mangled and quoted names to use in SQL queries. For example:

182 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

(u'Customer') :u'"Customer"'
(u'Customer', u'Address', u'City') : u"Address_City"
(u'Customer', u'Orders') : u"Customer_Orders"

Note that the first element of the tuple is the entity set name but the default implementation does not
use this in the mangled name for primitive fields as they are qualified in contexts where a name clash is
possible. However, mangled navigation property names do include the table name prefix as they used as
pseudo-table names.

field name_joiner = None
Default string used to join complex field names in SQL queries, e.g. Address_City

ro_names = None
The set of names that should be considered read only by the SQL insert and update generation code. The
items in the set are source paths, as per mangled names. The set is populated on construction using the
ro_name () method.

mangle_name (source_path)
Mangles a source path into a quoted SQL name

This is a key extension point to use when you are wrapping an existing database with the API. It allows
you to control the names used for entity sets (tables) and properties (columns) in SQL queries.

source_path A tuple or list of strings describing the path to a property in the metadata model.
For entity sets, this is a tuple with a single entry in it, the entity set name.

For data properties this is a tuple containing the path, including the entity set name e.g., (“Cus-
tomers”,” Address”,’City”) for the City property in a complex property ‘Address’ in entity set “Cus-
tomers”.

For navigation properties the tuple is the navigation property name prefixed with the entity set name,
e.g., (“Customers”,’Orders”). This name is only used as a SQL alias for the target table, to remove
ambiguity from certain queries that include a join across the navigation property. The mangled name
must be distinct from the entity set name itself. from other such aliases and from other column names
in this table.

Foreign key properties contain paths starting with both the entity set and the association set names
(see SOLForeignKeyCollection for details) unless the association is symmetric, in which case
they also contain the navigation property name (see SOLAssociationCollection for details of
these more complex cases).

The default implementation strips the entity set name away and uses the default joining character to create
a compound name before calling quote_identifier () to obtain the SQL string. All names are
mangled once, on construction, and from then on looked up in the dictionary of mangled names.

If you need to override this method to modify the names used in your database you should ensure all
other names (including any unrecognized by your program) are passed to the default implementation for
mangling.

ro_name (source_path)
Test if a source_path identifies a read-only property

This is a an additional extension point to use when you are wrapping an existing database with the API. It
allows you to manage situations where an entity property has an implied value and should be treated read
only.

There are two key use cases, auto-generated primary keys (such as auto-increment integer keys) and for-
eign keys which are exposed explicitly as foreign keys and should only be updated through an associated
navigation property.

4.3. OData Reference 183

Pyslet Documentation, Release 0.6.20160201

source_path A tuple or list of strings describing the path to a property in the metadata model. See
mangle_name () for more information.

The default implementation returns False.

If you override this method you must ensure all other names (including any unrecognized by your program)
are passed to the default implementation using super.

source_path_generator (entity_set)

Utility generator for source path fuples for entity_set

get_collection_class ()

Returns the collection class used to represent a generic entity set.

Override this method to provide a class derived from SOLEntityCollection when you are customis-
ing this implementation for a specific database engine.

get_symmetric_navigation_class ()

Returns the collection class used to represent a symmetric relation.

Override this method to provide a class derived from SOLAssociationCollection when you are
customising this implementation for a specific database engine.

get_fk_class()

Returns the class used when the FK is in the source table.

Override this method to provide a class derived from SQLForeignKeyCollection when you are
customising this implementation for a specific database engine.

get_rk_class()

Returns the class used when the FK is in the target table.

Override this method to provide a class derived from SQOLReverseKeyCollection when you are
customising this implementation for a specific database engine.

create_all_ tables (out=None)

Creates all tables in this container.

out An optional file-like object. If given, the tables are not actually created, the SQL statements are
written to this file instead.

Tables are created in a sensible order to ensure that foreign key constraints do not fail but this method is not
compatible with databases that contain circular references though, e.g., Table A -> Table B with a foreign
key and Table B -> Table A with a foreign key. Such databases will have to be created by hand. You can
use the create_table_query methods to act as a starting point for your script.

drop_all_tables (out=None)

Drops all tables in this container.

Tables are dropped in a sensible order to ensure that foreign key constraints do not fail, the order is essen-
tially the reverse of the order used by create_all tables ().

connection_stats ()

Return information about the connection pool

Returns a triple of:

nlocked the number of connections in use by all threads.
nunlocked the number of connections waiting

nidle the number of dead connections

Connections are placed in the ‘dead pool’ when unexpected lock failures occur or if they are locked and
the owning thread is detected to have terminated without releasing them.

184

Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

pool_cleaner (max_idle=900.0)
Cleans up the connection pool

max_idle (float) Optional number of seconds beyond which an idle connection is closed. Defaults to 10
times the SOI, TIMEOUT.

open ()
Creates and returns a new connection object.

Must be overridden by database specific implementations because the underlying DB ABI does not provide
a standard method of connecting.

close_connection (connection)
Calls the underlying close method.

break_ connection (connection)
Called when closing or cleaning up locked connections.

This method is called when the connection is locked (by a different thread) and the caller wants to force
that thread to relinquish control.

The assumption is that the database is stuck in some lengthy transaction and that break_connection can
be used to terminate the transaction and force an exception in the thread that initiated it - resulting in
a subsequent call to release_connection () and a state which enables this thread to acquire the
connection’s lock so that it can close it.

The default implementation does nothing, which might cause the close method to stall until the other thread
relinquishes control normally.

close (timeout=5)
Closes this database.

This method goes through each open connection and attempts to acquire it and then close it. The object is
put into a mode that disables acquire_connection () (it returns None from now on).

timeout Defaults to 5 seconds. If connections are locked by other running threads we wait for those
threads to release them, calling break_connection () to speed up termination if possible.

If None (not recommended!) this method will block indefinitely until all threads properly call
release_connection ().

Any locks we fail to acquire in the timeout are ignored and the connections are left open for the python
garbage collector to dispose of.

quote_identifier (identifier)
Given an identifier returns a safely quoted form of it.

By default we strip double quote and then use them to enclose it. E.g., if the string u’Employee_Name’ is
passed then the string u“‘Employee_Name™’ is returned.

prepare_sql_type (simple_value, params, nullable=None)
Given a simple value, returns a SQL-formatted name of its type.

Used to construct CREATE TABLE queries.

simple_value A pyslet.odata’.csdl.SimpleValue instance which should have been created
from a suitable pyslet.odataZ2.csdl.Property definition.

params A SOLParams object. If simple_value is non-NULL, a DEFAULT value is added as part of the
type definition.

nullable Optional Boolean that can be used to override the nullable status of the associated property
definition.

4.3.

OData Reference 185

Pyslet Documentation, Release 0.6.20160201

For example, if the value was created from an Int32 non-nullable property and has value O then this might
return the string W INTEGER NOT NULL DEFAULT ?° with O being added to params

You should override this implementation if your database platform requires special handling of certain
datatypes. The default mappings are given below.

EDM Type SQL Equivalent

Edm.Binary BINARY (MaxLength) if FixedLength specified

Edm.Binary VARBINARY (MaxLength) if no FixedLength

Edm.Boolean BOOLEAN

Edm.Byte SMALLINT

Edm.DateTime TIMESTAMP

Edm.DateTimeOffset CHARACTER(27), ISO 8601 string representation is used with micro second
precision

Edm.Decimal DECIMAL(Precision,Scale), defaults 10,0

Edm.Double FLOAT

Edm.Guid BINARY(16)

Edm.Int16 SMALLINT

Edm.Int32 INTEGER

Edm.Int64 BIGINT

Edm.SByte SMALLINT

Edm.Single REAL

Edm.String CHAR(MaxLength) or VARCHAR(MaxLength)

Edm.String NCHAR(MaxLength) or NVARCHAR(MaxLength) if Unicode="true”

Edm.Time TIME

Parameterized CREATE TABLE queries are unreliable in my experience so the current implementation of
the native create_table methods ignore default values when calling this method.

prepare_sql_value (simple_value)
Returns a python object suitable for passing as a parameter

simple_value A pysliet.odataZ2.csdl.SimpleValue instance.

You should override this method if your database requires special handling of parameter values. The
default implementation performs the following conversions

EDM Type Python value added as parameter
NULL None

Edm.Binary (byte) string

Edm.Boolean True or False

Edm.Byte int

Edm.DateTime Timestamp instance from DB API module
Edm.DateTimeOffset | string (ISO 8601 basic format)
Edm.Decimal Decimal instance

Edm.Double float

Edm.Guid (byte) string

Edm.Int16 int

Edm.Int32 int

Edm.Int64 long

Edm.SByte int

Edm.Single float

Edm.String (unicode) string

Edm.Time Time instance from DB API module

read_sql_value (simple_value, new_value)
Updates simple_value from new_value.

186

Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

simple_value A pyslet.odata2.csdl.SimpleValue instance.
new_value A value returned by the underlying DB API, e.g., from a cursor fetch operation

This method performs the reverse transformation to prepare sqgl_value () and may need to be over-
ridden to convert new_value into a form suitable for passing to the underlying set_ from value ()
method.

new_from_sql_value (sql_value)
Returns a new simple value with value sql_value

The return value is a pyslet.odataZ.csdl.SimpleValue instance.
sql_value A value returned by the underlying DB API, e.g., from a cursor fetch operation

This method creates a new instance, selecting the most appropriate type to represent sql_value. By default
pyslet.odataZ2.csdl.EDMValue.NewSimpleValueFromValue () is used.

You may need to override this method to identify the appropriate value type.

select_limit_clause (skip, top)
Returns a SELECT modifier to limit a query

See 1imit_clause () for details of the parameters.
Returns a tuple of:

skip O if the modifier implements this functionality. If it does not implement this function then the value
passed in for skip must be returned.

modifier A string modifier to insert immediately after the SELECT statement (must be empty or end with
a space).

For example, if your database supports the TOP keyword you might return:

(skip, 'TOP "% top)

This will result in queries such as:

SELECT TOP 10 FROM

More modern syntax tends to use a special limit clause at the end of the query, rather than a SELECT
modifier. The default implementation returns:

(skip, '")

...essentially doing nothing.

limit_clause (skip, top)
Returns a limit clause to limit a query

skip An integer number of entities to skip
top An integer number of entities to limit the result set of a query or None is no limit is desired.
Returns a tuple of:

skip O if the limit clause implements this functionality. If it does not implement this function then the
value passed in for skip must be returned.

clause A limit clause to append to the query. Must be empty or end with a space.

For example, if your database supports the MySQL-style LIMIT and OFFSET keywords you would return
(for non-None values of top):

4.3. OData Reference 187

Pyslet Documentation, Release 0.6.20160201

(0, 'LIMIT OFFSET ' % (top, skip))

This will result in queries such as:

SELECT * FROM Customers LIMIT 10 OFFSET 20

More modern syntax tends to use a special limit clause at the end of the query, rather than a SELECT
modifier. Such as:

(skip, 'FETCH FIRST ROWS ONLY ' % top)

This syntax is part of SQL 2008 standard but is not widely adopted and, for compatibility with existing
external database implementation, the default implementation remains blank.

For an example of how to create a platform-specific implementation see SQLite below.

Entity Collections

These classes are documented primarily to facilitate the creation of alternative implementations designed to run over
other DB API based data layers. The documentation goes a bit further than is necessary to help promote an under-
standing of the way the API is implemented.

class pyslet.odata2.sglds.SQLEntityCollection (container, **kwargs)
Bases: pyslet.odata2.sqglds.SQLCollectionBase

Represents a collection of entities from an EntitySet.

This class is the heart of the SQL implementation of the API, constructing and executing queries to implement
the core methods from pyslet.odata’.csdl.EntityCollection.

insert_entity (entity)
Inserts entity into the collection.

We override this method, rerouting it to a SQL-specific implementation that takes additional arguments.

insert_entity_sql (entity, from_end=None, fk_values=None, transaction=None)
Inserts entity into the collection.

This method is not designed to be overridden by other implementations but it does extend the default func-
tionality for a more efficient implementation and to enable better transactional processing. The additional
parameters are documented here.

from_end An optional pyslet.odataZ.csdl.AssociationSetEnd bound to this entity set. If
present, indicates that this entity is being inserted as part of a single transaction involving an insert or
update to the other end of the association.

This suppresses any check for a required link via this association (as it is assumed that the link is
present, or will be, in the same transaction).

fk_values If the association referred to by from_end is represented by a set of foreign keys stored in
this entity set’s table (see SOLReverseKeyCollection) then fk_values is the list of (mangled
column name, value) tuples that must be inserted in order to create the link.

transaction An optional transaction. If present, the connection is left uncommitted.
The method functions in three phases.

1.Process all bindings for which we hold the foreign key. This includes inserting new entities where
deep inserts are being used or calculating foreign key values where links to existing entities have been
specified on creation.

In addition, all required links are checked and raise errors if no binding is present.

188 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

2.A simple SQL INSERT statement is executed to add the record to the database along with any foreign
keys generated in (1) or passed in fk_values.

3.Process all remaining bindings. Although we could do this using the update bindings () method
of DeferredValue we handle this directly to retain transactional integrity (where supported).

Links to existing entities are created using the insert_link method available on the SQL-specific
SQLNavigationCollection.

Deep inserts are handled by a recursive call to this method. After step 1, the only bindings that remain
are (a) those that are stored at the other end of the link and so can be created by passing values for
from_end and fk_values in a recursive call or (b) those that are stored in a separate table which are
created by combining a recursive call and a call to insert_link.

Required links are always created in step 1 because the overarching mapping to SQL forces such links to be
represented as foreign keys in the source table (i.e., this table) unless the relationship is 1-1, in which case
the link is created in step 3 and our database is briefly in violation of the model. If the underlying database
API does not support transactions then it is possible for this state to persist resulting in an orphan entity or
entities, i.e., entities with missing required links. A failed rollback () call will log this condition along
with the error that caused it.

update_entity (entity)
Updates entity

This method follows a very similar pattern to InsertMethod (), using a three-phase process.

1.Process all bindings for which we hold the foreign key. This includes inserting new entities where
deep inserts are being used or calculating foreign key values where links to existing entities have
been specified on update.

2.A simple SQL UPDATE statement is executed to update the record in the database along with
any updated foreign keys generated in (1).

3.Process all remaining bindings while retaining transactional integrity (where supported).

Links to existing entities are created using the insert_link or replace methods available on the
SQL-specific SOLNavigationCollection. The replace method is used when a navigation
property that links to a single entity has been bound. Deep inserts are handled by calling in-
sert_entity_sql before the link is created.

The same transactional behaviour as insert_entity_ sql () is exhibited.

update_link (entity, link_end, target_entity, no_replace=False, transaction=None)
Updates a link when this table contains the foreign key

entity The entity being linked from (must already exist)

link_end The AssociationSetEnd bound to this entity set that represents this entity set’s end of the
assocation being modified.

target_entity The entity to link to or None if the link is to be removed.

no_replace If True, existing links will not be replaced. The affect is to force the underlying SQL query to
include a constraint that the foreign key is currently NULL. By default this argument is False and any
existing link will be replaced.

transaction An optional transaction. If present, the connection is left uncommitted.

delete_entity (entity, from_end=None, transaction=None)
Deletes an entity

Called by the dictionary-like del operator, provided as a separate method to enable it to be called recursively
when doing cascade deletes and to support transactions.

4.3.

OData Reference 189

Pyslet Documentation, Release 0.6.20160201

from_end An optional AssociationSetEnd bound to this entity set that represents the link from
which we are being deleted during a cascade delete.

The purpose of this parameter is prevent cascade deletes from doubling back on themselves and caus-
ing an infinite loop.

transaction An optional transaction. If present, the connection is left uncommitted.

delete_link (entity, link_end, target_entity, transaction=None)
Deletes the link between entity and target_entity

The foreign key for this link must be held in this entity set’s table.
entity The entity in this entity set that the link is from.

link_end The AssociationSetEnd bound to this entity set that represents this entity set’s end of the
assocation being modified.

target_entity The target entity that defines the link to be removed.
transaction An optional transaction. If present, the connection is left uncommitted.

clear_links (link_end, target_entity, transaction=None)
Deletes all links to rarget_entity

The foreign key for this link must be held in this entity set’s table.

link_end The AssociationSetEnd bound to this entity set that represents this entity set’s end of the
assocation being modified.

target_entity The target entity that defines the link(s) to be removed.
transaction An optional transaction. If present, the connection is left uncommitted.

create_table_query ()
Returns a SQL statement and params for creating the table.

create_table ()
Executes the SQL statement create table query ()

drop_table_query ()
Returns a SQL statement for dropping the table.

drop_table ()
Executes the SQL statement drop_table query ()

class pyslet.odata2.sglds.SQLCollectionBase (container, **kwargs)
Bases: pyslet.odata2.core.EntityCollection

A base class to provide core SQL functionality.
Additional keyword arguments:
container A SQOLEntityContainer instance.

On construction a data connection is acquired from container, this may prevent other threads from using the
database until the lock is released by the close () method.

container = None
the parent container (database) for this collection

connection = None
a connection to the database acquired with SQLEntityContainer.acquire_connection ()

close ()
Closes the cursor and database connection if they are open.

190 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

set_page (top, skip=0, skiptoken=None)
Sets the values for paging.

Our implementation uses a special format for skiptoken. It is a comma-separated list of simple literal values
corresponding to the values required by the ordering augmented with the key values to ensure uniqueness.

For example, if $orderby=A,B on an entity set with key K then the skiptoken will typically have three
values comprising the last values returned for A,B and K in that order. In cases where the resulting
skiptoken would be unreasonably large an additional integer (representing a further skip) may be appended
and the whole token expressed relative to an earlier skip point.

reset_joins ()
Sets the base join information for this collection

add_join (name)
Adds a join to this collection

name The name of the navigation property to traverse.
The return result is the alias name to use for the target table.
As per the specification, the target must have multiplicity 1 or O..1.

join_clause()
A utility method to return the JOIN clause.

Defaults to an empty expression.

where_clause (entity, params, use_filter=True, use_skip=False, null_cols=())
A utility method that generates the WHERE clause for a query

entity An optional entity within this collection that is the focus of this query. If not None the resulting
WHERE clause will restrict the query to this entity only.

params The SOILParams object to add parameters to.
use_filter Defaults to True, indicates if this collection’s filter should be added to the WHERE clause.

use_skip Defaults to False, indicates if the skiptoken should be used in the where clause. If True then the
query is limited to entities appearing after the skiptoken’s value (see below).

null_cols An iterable of mangled column names that must be NULL (defaults to an empty tuple). This
argument is used during updates to prevent the replacement of non-NULL foreign keys.

The operation of the skiptoken deserves some explanation. When in play the skiptoken contains the last
value of the order expression returned. The order expression always uses the keys to ensure unambiguous
ordering. The clause added is best served with an example. If an entity has key K and an order expression
such as “tolower(Name) desc” then the query will contain something like:

SELECT K, Nname, DOB, LOWER (Name) AS o_1, K
WHERE (o_1 < ? OR (o_1 = ? AND K > ?))

The values from the skiptoken will be passed as parameters.

where_entity clause (where, entity, params)
Adds the entity constraint expression to a list of SQL expressions.

where The list to append the entity expression to.
entity An expression is added to restrict the query to this entity

where_skiptoken_clause (where, params)
Adds the entity constraint expression to a list of SQL expressions.

where The list to append the skiptoken expression to.

4.3. OData Reference 191

Pyslet Documentation, Release 0.6.20160201

set_orderby (orderby)

Sets the orderby rules for this collection.

We override the default implementation to calculate a list of field name aliases to use in ordered queries.
For example, if the orderby expression is “tolower(Name) desc” then each SELECT query will be gener-
ated with an additional expression, e.g.:

SELECT ID, Name, DOB, LOWER (Name) AS o_1
ORDER BY o_1 DESC, ID ASC

The name “o_1" is obtained from the name mangler using the tuple:

(entity_set.name, 'o_1")

Subsequent order expressions have names ‘0_2’, ‘o_3’, etc.

Notice that regardless of the ordering expression supplied the keys are always added to ensure that, when
an ordering is required, a defined order results even at the expense of some redundancy.

orderby_clause ()

A utility method to return the orderby clause.

params The SOLParams object to add parameters to.

orderby_cols (column_names, params, force_order=False)

A utility to add the column names and aliases for the ordering.
column_names A list of SQL column name/alias expressions
params The SOLParams object to add parameters to.

force_order Forces the addition of an ordering by key if an orderby expression has not been set.

insert_fields (entity)

A generator for inserting mangled property names and values.
entity Any instance of Entity
The yielded values are tuples of (mangled field name, SimpleValue instance).

Read only fields are never generated, even if they are keys. This allows automatically generated keys to be
used and also covers the more esoteric use case where a foreign key constraint exists on the primary key
(or part thereof) - in the latter case the relationship should be marked as required to prevent unexpected
constraint violations.

Otherwise, only selected fields are yielded so if you attempt to insert a value without selecting the key
fields you can expect a constraint violation unless the key is read only.

auto_fields (entity)

A generator for selecting auto mangled property names and values.
entity Any instance of Entity
The yielded values are tuples of (mangled field name, SimpleValue instance).

Only fields that are read only are yielded with the caveat that they must also be either selected or keys. The
purpose of this method is to assist with reading back automatically generated field values after an insert or
update.

key_fields (entity)

A generator for selecting mangled key names and values.

entity Any instance of Entity

192

Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

The yielded values are tuples of (mangled field name, SimpleValue instance). Only the keys fields are
yielded.

select_fields (entity, prefix=True)
A generator for selecting mangled property names and values.

entity Any instance of Entity

The yielded values are tuples of (mangled field name, SimpleValue instance). Only selected fields are
yielded with the caveat that the keys are always selected.

update_fields (entity)
A generator for updating mangled property names and values.

entity Any instance of Entity
The yielded values are tuples of (mangled field name, SimpleValue instance).

Neither read only fields nor key are generated. All other fields are yielded but unselected fields are set to
NULL before being yielded. This implements OData’s PUT semantics. See merge_fields () for an
alternative.

merge_fields (entity)
A generator for merging mangled property names and values.

entity Any instance of Entity
The yielded values are tuples of (mangled field name, SimpleValue instance).

Neither read only fields, keys nor unselected fields are generated. All other fields are yielded implementing
OData’s MERGE semantics. See update_fields () for an alternative.

stream_field (entity, prefix=True)
Returns information for selecting the stream ID.

entity Any instance of Entity
Returns a tuples of (mangled field name, SimpleValue instance).

sql_expression (expression, params, context="AND’)
Converts an expression into a SQL expression string.

expression A pyslet.odata2.core.CommonExpression instance.
params A SOLParams object of the appropriate type for this database connection.

context A string containing the SQL operator that provides the context in which the expression is being
converted, defaults to ‘AND’. This is used to determine if the resulting expression must be bracketed
or not. See sgl_bracket () for a useful utility function to illustrate this.

This method is basically a grand dispatcher that sends calls to other node-specific methods with similar
signatures. The effect is to traverse the entire tree rooted at expression.

The result is a string containing the parameterized expression with appropriate values added to the params
object in the same sequence that they appear in the returned SQL expression.

When creating derived classes to implement database-specific behaviour you should override the individual
evaluation methods rather than this method. All related methods have the same signature.

Where methods are documented as having no default implementation, NotImplementedError is raised.

sql_bracket (query, context, operator)
A utility method for bracketing a SQL query.

query The query string

4.3. OData Reference 193

Pyslet Documentation, Release 0.6.20160201

context A string representing the SQL operator that defines the context in which the query is to placed.
E.g., ‘AND’

operator The dominant operator in the query.

This method is used by operator-specific conversion methods. The query is not parsed, it is merely passed
in as a string to be bracketed (or not) depending on the values of context and operator.

The implementation is very simple, it checks the precedence of operator in context and returns query
bracketed if necessary:

collection.sqgl_bracket ("Age+3","«","+")==" (Age+3)"
collection.sqgl_bracket ("Agex3","+","x")=="Agex3"

sql_expression_member (expression, params, context)

Converts a member expression, e.g., Address/City

This implementation does not support the use of navigation properties but does support references to
complex properties.

It outputs the mangled name of the property, qualified by the table name.

sql_expression_cast (expression, params, context)

Converts the cast expression: no default implementation

sql_expression_generic_binary (expression, params, context, operator)

A utility method for implementing binary operator conversion.

The signature of the basic sgl_expression () is extended to include an operator argument, a string
representing the (binary) SQL operator corresponding to the expression object.

sql_expression_mul (expression, params, context)

Converts the mul expression: maps to SQL “*”

sql_expression_div (expression, params, context)

Converts the div expression: maps to SQL *“/”

sql_expression_mod (expression, params, context)

Converts the mod expression: no default implementation

sql_expression_add (expression, params, context)

Converts the add expression: maps to SQL “+”

sql_expression_sub (expression, params, context)

Converts the sub expression: maps to SQL “-*

sql_expression_1lt (expression, params, context)

Converts the It expression: maps to SQL “<”

sql_expression_gt (expression, params, context)

Converts the gt expression: maps to SQL “>”

sql_expression_1le (expression, params, context)

Converts the le expression: maps to SQL “<="

sql_expression_ge (expression, params, context)

Converts the ge expression: maps to SQL “>="

sql_expression_isof (expression, params, context)

Converts the isof expression: no default implementation

sql_expression_eq (expression, params, context)

Converts the eq expression: maps to SQL “="

194

Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

sql_expression_ne (expression, params, context)
Converts the ne expression: maps to SQL “<>”

sql_expression_and (expression, params, context)
Converts the and expression: maps to SQL “AND”

sql_expression_or (expression, params, context)
Converts the or expression: maps to SQL “OR”

sql_expression_endswith (expression, params, context)
Converts the endswith function: maps to “op[0] LIKE ‘%’ +op[1]”

This is implemented using the concatenation operator

sql_expression_indexof (expression, params, context)
Converts the indexof method: maps to POSITION(op[0] IN op[1])

sql_expression_replace (expression, params, context)
Converts the replace method: no default implementation

sql_expression_startswith (expression, params, context)
Converts the startswith function: maps to “op[0] LIKE op[1]+’ %"’

This is implemented using the concatenation operator

sql_expression_tolower (expression, params, context)
Converts the tolower method: maps to LOWER function

sql_expression_toupper (expression, params, context)
Converts the toupper method: maps to UCASE function

sql_expression_trim (expression, params, context)
Converts the trim method: maps to TRIM function

sql_expression_substring (expression, params, context)
Converts the substring method

maps to SUBSTRING(op[0] FROM op[1] [FOR op[2]]

sql_expression_substringof (expression, params, context)
Converts the substringof function

maps to “op[1] LIKE ‘%’ +op[0]+ %
To do this we need to invoke the concatenation operator.

This method has been poorly defined in OData with the parameters being switched between versions 2 and
3. Itis being withdrawn as a result and replaced with contains in OData version 4. We follow the version 3
convention here of “first parameter in the second parameter” which fits better with the examples and with
the intuitive meaning:

substringof (A,B) == A in B

sql_expression_concat (expression, params, context)
Converts the concat method: maps to |l

sql_expression_length (expression, params, context)
Converts the length method: maps to CHAR_LENGTH(op[0])

sql_expression_year (expression, params, context)
Converts the year method: maps to EXTRACT(YEAR FROM op[0])

sql_expression_month (expression, params, context)
Converts the month method: maps to EXTRACT(MONTH FROM op[0])

4.3. OData Reference 195

Pyslet Documentation, Release 0.6.20160201

sql_expression_day (expression, params, context)
Converts the day method: maps to EXTRACT(DAY FROM op[0])

sql_expression_hour (expression, params, context)
Converts the hour method: maps to EXTRACT(HOUR FROM op[0])

sql_expression_minute (expression, params, context)
Converts the minute method: maps to EXTRACT(MINUTE FROM op[0])

sql_expression_second (expression, params, context)
Converts the second method: maps to EXTRACT(SECOND FROM op[0])

sql_expression_round (expression, params, context)
Converts the round method: no default implementation

sql_expression_floor (expression, params, context)
Converts the floor method: no default implementation

sql_expression_ceiling (expression, params, context)
Converts the ceiling method: no default implementation

class pyslet.odata2.sglds.SQLNavigationCollection (aset_name, **kwargs)
Bases: pyslet.odataZ2.sglds.SQLCollectionBase, pyslet.odataZ.core.NavigationCollection

Abstract class representing all navigation collections.
Additional keyword arguments:

aset_name The name of the association set that defines this relationship. This additional parameter is used by
the name mangler to obtain the field name (or table name) used for the foreign keys.

insert_1link (entity, transaction=None)
Inserts a link to entity into this collection.

transaction An optional transaction. If present, the connection is left uncommitted.

replace_link (entity, transaction=None)
Replaces all links with a single link to entity.

transaction An optional transaction. If present, the connection is left uncommitted.

delete_1link (entity, transaction=None)
A utility method that deletes the link to entity in this collection.

This method is called during cascaded deletes to force-remove a link prior to the deletion of the entity
itself.

transaction An optional transaction. If present, the connection is left uncommitted.

class pyslet.odata?2.sqglds.SQLForeignKeyCollection (**kwargs)
Bases: pyslet.odata2.sqglds.SQLNavigationCollection

The collection of entities obtained by navigation via a foreign key

This object is used when the foreign key is stored in the same table as from_entity. This occurs when the
relationship is one of:

0..1 to 1
Many to 1
Many to 0..1

The name mangler looks for the foreign key in the field obtained by mangling:

(entity set name, association set name, key name) ‘

196 Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

For example, suppose that a link exists from entity set Orders[*] to entity set Customers[0..1] and that the key
field of Customer is “CustomerID”. If the association set that binds Orders to Customers with this link is called
OrdersToCustomers then the foreign key would be obtained by looking up:

('Orders', 'OrdersToCustomers', '"CustomerID')

By default this would result in the field name:

'OrdersToCustomers_CustomerID'

This field would be looked up in the ‘Orders’ table. The operation of the name mangler can be customised by
overriding the SOLEntityContainer.mangle_name () method in the container.

reset_joins ()
Overridden to provide an inner join to from_entity‘s table.

The join clause introduces an alias for the table containing from_entity. The resulting join looks something
like this:

SELECT ... FROM Customers
INNER JOIN Orders AS navl ON
Customers.CustomerID=navl.OrdersToCustomers_CustomerID

WHERE navl.OrderID = ?;

The value of the OrderID key property in from_entity is passed as a parameter when executing the expres-
sion.

In most cases, there will be a navigation properly bound to this association in the reverse direction. For
example, to continue the above example, Orders to Customers might be bound to a navigation property in
the reverse direction called, say, ‘AllOrders’ in the target entity set.

If this navigation property is used in an expression then the existing INNER JOIN defined here is used
instead of a new LEFT JOIN as would normally be the case.

where_clause (entity, params, use_filter=True, use_skip=False)
Adds the constraint for entities linked from from_entity only.

We continue to use the alias set in the join_clause () where an example WHERE clause is illustrated.

class pyslet.odata2.sglds.SQLReverseKeyCollection (**kwargs)
Bases: pyslet.odata2.sqglds.SQLNavigationCollection

The collection of entities obtained by navigation to a foreign key

This object is used when the foreign key is stored in the target table. This occurs in the reverse of the cases
where SOLReverseKeyCollectionisused, i.e:

1t00..1 1 to Many 0..1 to Many
The implementation is actually simpler in this direction as no JOIN clause is required.

where_clause (entity, params, use_filter=True, use_skip=False)
Adds the constraint to entities linked from from_entity only.

delete_1link (entity, transaction=None)
Called during cascaded deletes.

This is actually a no-operation as the foreign key for this association is in the entity’s record itself and will
be removed automatically when entity is deleted.

clear_links (transaction=None)
Deletes all links from this collection’s from_entity

4.3. OData Reference 197

Pyslet Documentation, Release 0.6.20160201

transaction An optional transaction. If present, the connection is left uncommitted.

class pyslet.odata?2.sqglds.SQLAssociationCollection (**kwargs)

Bases: pyslet.odataZ.sqlds.SQLNavigationCollection
The collection obtained by navigation using an auxiliary table

This object is used when the relationship is described by two sets of foreign keys stored in an auxiliary table.
This occurs mainly when the link is Many to Many but it is also used for 1 to 1 relationships. This last use may
seem odd but it is used to represent the symmetry of the relationship. In practice, a single set of foreign keys is
likely to exist in one table or the other and so the relationship is best modelled by a 0..1 to 1 relationship even if
the intention is that the records will always exist in pairs.

The name of the auxiliary table is obtained from the name mangler using the association set’s name. The keys
use a more complex mangled form to cover cases where there is a recursive Many to Many relation (such as a
social network of friends between User entities). The names of the keys are obtained by mangling:

(association set name, target entity set name,
navigation property name, key name)

An example should help. Suppose we have entities representing sports Teams(TeamID) and sports Play-
ers(PlayerID) and that you can navigate from Player to Team using the “PlayedFor” navigation property and
from Team to Player using the “Players” navigation property. Both navigation properties are collections so the
relationship is Many to Many. If the association set that binds the two entity sets is called PlayersAndTeams
then the the auxiliary table name will be mangled from:

('"PlayersAndTeams')

and the fields will be mangled from:

('"PlayersAndTeams', 'Teams', 'PlayedFor', 'TeamID')
('"PlayersAndTeams', 'Players', 'Players', 'PlayerID"')

By default this results in column names ‘Teams_PlayedFor_TeamID’ and ‘Players_Players_PlayerID’. If you
are modelling an existing database then “TeamID’ and ‘PlayerID’ on their own are more likely choices. You
would need to override the SOLEntityContainer.mangle_name () method in the container to catch
these cases and return the shorter column names.

Finally, to ensure the uniqueness of foreign key constraints, the following names are mangled:

(association set name, association set name, 'fkA')
(association set name, association set name, 'fkB')

Notice that the association set name is used twice as it is not only defines the scope of the name but must also
be incorporated into the constraint name to ensure uniqueness across the entire databas.

reset_joins ()
Overridden to provide an inner join to the aux table.

If the Customer and Group entities are related with a Many-Many relationship called Customers_Groups,
the resulting join looks something like this (when the from_entity is a Customer):

SELECT ... FROM Groups
INNER JOIN Customers_Groups ON
Groups.GroupID = Customers_Groups.Groups_MemberOf_GroupID

WHERE Customers_Groups.Customers_Members_CustomerID = ?;

The value of the CustomerID key property in from_entity is passed as a parameter when executing the
expression.

198

Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

add_join (name)
Overridden to provide special handling of navigation

In most cases, there will be a navigation property bound to this association in the reverse direction. For
Many-Many relations this can’t be used in an expression but if the relationship is actually 1-1 then we
would augment the default INNER JOIN with an additional INNER JOIN to include the whole of the
from_entity. (Normally we’d think of these expressions as LEFT joins but we’re navigating back across a
link that points to a single entity so there is no difference.)

To illustrate, if Customers have a 1-1 relationship with PrimaryContacts through a Cus-
tomers_PrimaryContacts association set then the expression grows an additional join:

SELECT ... FROM PrimaryContacts
INNER JOIN Customers_PrimaryContacts ON
PrimaryContacts.ContactID =
Customers_PrimaryContacts.PrimaryContacts_Contact_ContactID
INNER JOIN Customers AS navl ON
Customers_PrimaryContacts.Customers_Customer_CustmerID =
Customers.CustomerID

WHERE Customers_PrimaryContacts.Customers_Customer_CustomerID = ?;

This is a cumbersome query to join two entities that are supposed to have a 1-1 relationship, which is one
of the reasons why it is generally better to pick on side of the relationship or other and make it 0..1 to 1 as
this would obviate the auxiliary table completely and just put a non-NULL, unique foreign key in the table
that represents the 0..1 side of the relationship.

where_clause (entity, params, use_filter=True, use_skip=False)
Provides the from_entity constraint in the auxiliary table.

insert_entity (entity)
Rerouted to a SQL-specific implementation

insert_entity_sql (entity, transaction=None)
Inserts entity into the base collection and creates the link.

This is always done in two steps, bound together in a single transaction (where supported). If this object
represents a 1 to 1 relationship then, briefly, we’ll be in violation of the model. This will only be an issue
in non-transactional systems.

delete_link (entity, transaction=None)
Called during cascaded deletes to force-remove a link prior to the deletion of the entity itself.

This method is also re-used for simple deletion of the link in this case as the link is in the auxiliary table
itself.

clear_1links (transaction=None)
Deletes all links from this collection’s from_entity

transaction An optional transaction. If present, the connection is left uncommitted.

classmethod clear_ links_unbound (container, from_end, from_entity, transaction)
Special class method for deleting all the links from from_entity

This is a class method because it has to work even if there is no navigation property bound to this end of
the association.

container The SOLEntityContainer containing this association set.

from_end The AssociationSetEnd that represents the end of the association that from_entity is
bound to.

from_entity The entity to delete links from

4.3. OData Reference 199

Pyslet Documentation, Release 0.6.20160201

transaction The current transaction (required)

This is a class method because it has to work even if there is no navigation property bound to this end
of the association. If there was a navigation property then an instance could be created and the simpler
clear 1inks () method used.

classmethod create_table_query (container, aset_name)
Returns a SQL statement and params to create the auxiliary table.

This is a class method to enable the table to be created before any entities are created.

classmethod create_table (container, aset_name)
Executes the SQL statement create table query ()

classmethod drop_table_query (container, aset_name)
Returns a SQL statement to drop the auxiliary table.

classmethod drop_table (container, aset_name)
Executes the SQL statement drop table query ()

SQLite

This module also contains a fully functional implementation of the API based on the sqlite3 module. The first job with
any SQL implementation is to create a base collection class that implements any custom expression handling.

In the case of SQLite we override a handful of the standard SQL functions only. Notice that this class is derived from
SQLCollectionBase, an abstract class. If your SQL platform adheres to the SQL standard very closely, or you
are happy for SQL-level errors to be generated when unsupported SQL syntax is generated by some filter or orderby
expressions then you can skip the process of creating customer collection classes completely.

class pyslet.odata2.sglds.SQLiteEntityCollectionBase (container, **kwargs)

Bases: pyslet.odataZ.sqglds.SQLCollectionBase
Base class for SQLite SQL custom mappings.

This class provides some SQLite specific mappings for certain functions to improve compatibility with the
OData expression language.

sql_expression_length (expression, params, context)
Converts the length method: maps to length(op[0])

sql_expression_year (expression, params, context)
Converts the year method

maps to CAST(strftime(‘%Y’,0p[0]) AS INTEGER)

sql_expression_month (expression, params, context)
Converts the month method

maps to CAST(strftime(‘%m’,op[0]) AS INTEGER)

sql_expression_day (expression, params, context)
Converts the day method

maps to CAST(strftime(‘%d’,op[0]) AS INTEGER)

sql_expression_hour (expression, params, context)
Converts the hour method

maps to CAST(strftime(‘%H’,0p[0]) AS INTEGER)

200

Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

sql_expression_minute (expression, params, context)
Converts the minute method

maps to CAST(strftime(‘%M’,0p[0]) AS INTEGER)

sql_expression_second (expression, params, context)
Converts the second method

maps to CAST(strftime(‘%S’,0p[0]) AS INTEGER)

sql_expression_tolower (expression, params, context)
Converts the tolower method

maps to lower(op[0])

sql_expression_toupper (expression, params, context)
Converts the toupper method

maps to upper(op[0])

To ensure that our custom implementations are integrated in to all the collection classes we have to create specific
classes for all collection types. These classes have no implementation!

class pyslet.odata?2.sqglds.SQLiteEntityCollection (container, **kwargs)
Bases: pyslet.odataZ.sqglds.SQLiteEntityCollectionBase,

pyslet.odataZ.sqglds.SQLEntityCollection
SQLite-specific collection for entity sets

class pyslet.odata?2.sqglds.SQLiteForeignKeyCollection (**kwargs)
Bases: pyslet.odataZ.sqglds.SQLiteEntityCollectionBase,

pyslet.odataZ.sqglds.SQLForeignKeyCollection
SQLite-specific collection for navigation from a foreign key

class pyslet.odata?2.sqglds.SQLiteReverseKeyCollection (**kwargs)
Bases: pyslet.odataZ.sqglds.SQLiteEntityCollectionBase,

pyslet.odataZ.sqglds.SQLReverseKeyCollection
SQLite-specific collection for navigation to a foreign key

class pyslet.odata?2.sglds.SQLiteAssociationCollection (**kwargs)
Bases: pyslet.odataZ.sqglds.SQLiteEntityCollectionBase,

pyslet.odataZ2.sqglds.SQLAssociationCollection
SQLite-specific collection for symmetric association sets

Finally, we can override the main container class to provide a complete implementation of our API using the sqlite3
module.

class pyslet.odata2.sglds.SQLiteEntityContainer (file_path, sqlite_options={}, **kwargs)
Bases: pyslet.odataZ.sqglds.SQLEntityContainer

Creates a container that represents a SQLite database.
Additional keyword arguments:
file_path The path to the SQLite database file.

sqlite_options A dictionary of additional options to pass as named arguments to the connect method. It de-
faults to an empty dictionary, you won’t normally need to pass additional options and you shouldn’t
change the isolation_level as the collection classes have been designed to work in the default mode. Also,
check_same_thread is forced to False, this is poorly documented but we only do it so that we can close a
connection in a different thread from the one that opened it when cleaning up.

4.3. OData Reference 201

Pyslet Documentation, Release 0.6.20160201

For more information see sqlite3

All other keyword arguments required to initialise the base class must be passed on construction except dbapi
which is automatically set to the Python sqlite3 module.

get_collection_class ()
Overridden to return SQLiteEntityCollection

get_symmetric_navigation_class()
Overridden to return SQLiteAssociationCollection

get_fk_class()
Overridden to return SQLiteForeignKeyCollection

get_rk_class()
Overridden to return SQLiteReverseKeyCollection

open ()
Calls the underlying connect method.

Passes the file_path used to construct the container as the only parameter. You can pass the string ‘:mem-
ory:’ to create an in-memory database.

Other connection arguments are not currently supported, you can derive a more complex implementation
by overriding this method and (optionally) the __init__ method to pass in values for .

break connection (connection)
Calls the underlying interrupt method.

close_connection (connection)
Calls the underlying close method.

prepare_sql_type (simple_value, params, nullable=None)
Performs SQLite custom mappings

EDM Type SQLite Equivalent
Edm.Binary BLOB
Edm.Decimal | TEXT

Edm.Guid BLOB

Edm.String TEXT

Edm.Time REAL

Edm.Int64 INTEGER

The remainder of the type mappings use the defaults from the parent class.

prepare_sql_value (simple_value)
Returns a python value suitable for passing as a parameter.

We inherit most of the value mappings but the following types have custom mappings.

EDM Type Python value added as parameter

Edm.Binary buffer object

Edm.Decimal | string representation obtained with str()

Edm.Guid buffer object containing bytes representation

Edm.Time value of pyslet.is08601.Time.get_total_seconds ()

Our use of buffer type is not ideal as it generates warning when Python is run with the -3 flag (to check for
Python 3 compatibility) but it seems unavoidable at the current time.

read_sql_value (simple_value, new_value)
Reverses the transformation performed by prepare_sql_value

202 Chapter 4. The Open Data Protocol (OData)

https://docs.python.org/2/library/sqlite3.html

Pyslet Documentation, Release 0.6.20160201

new_from_sql_value (sql_value)
Returns a new simple value instance initialised from sq/_value

Overridden to ensure that buffer objects returned by the underlying DB API are converted to strings.
Otherwise sqgl_value is passed directly to the parent.

Utility Classes
Some miscellaneous classes documented mainly to make the implementation of the collection classes easier to under-
stand.

class pyslet.odata2.sqglds.SQLTransaction (container, connection)
Bases: object

Class used to model a transaction.

Python’s DB API uses transactions by default, hiding the details from the caller. Essentially, the first execute
call on a connection issues a BEGIN statement and the transaction ends with either a commit or a rollback. It is
generally considered a bad idea to issue a SQL command and then leave the connection with an open transaction.

The purpose of this class is to help us write methods that can operate either as a single transaction or as part of
sequence of methods that form a single transaction. It also manages cursor creation and closing and logging.

Essentially, the class is used as follows:

t = SQLTransaction (db_container, db_connection)
try:
t.begin()
t.execute ("UPDATE SOME_TABLE SET SOME_COL='2"'")
t.commit ()
except Exception as e:
t.rollback (e)
finally:
t.close (e)

The transaction object can be passed to a sub-method between the begin and commit calls provided that method
follows the same pattern as the above for the try, except and finally blocks. The object keeps track of these
‘nested’ transactions and delays the commit or rollback until the outermost method invokes them.

api = None
the database module

connection = None
the database connection

cursor = None
the database cursor to use for executing commands

no_commit = None
used to manage nested transactions

query_count = None
records the number of successful commands

commit ()
Ends this transaction with a commit

Nested transactions do nothing.

rollback (err=None, swallow=False)
Calls the underlying database connection rollback method.

4.3. OData Reference 203

Pyslet Documentation, Release 0.6.20160201

Nested transactions do not rollback the connection, they do nothing except re-raise err (if required).
If rollback is not supported the resulting error is absorbed.

err The exception that triggered the rollback. If not None then this is logged at INFO level when the
rollback succeeds.

If the transaction contains at least one successfully executed query and the rollback fails then err is
logged at ERROR rather than INFO level indicating that the data may now be in violation of the
model.

swallow A flag (defaults to False) indicating that err should be swallowed, rather than re-raised.

close ()
Closes this transaction after a rollback or commit.

Each call to begin () MUST be balanced with one call to close.

class pyslet.odata?2.sqlds.SQLParams

Bases: object
An abstract class used to build parameterized queries.

Python’s DB API supports three different conventions for specifying parameters and each module indicates the
convention in use. The SQL construction methods in this module abstract away this variability for maximum
portability using different implementations of the basic SQLParams class.

add_param (value)
Adds a value to this set of parameters

Returns the string to include in the query in place of this value.
value: The native representation of the value in a format suitable for passing to the underlying DB API.

classmethod escape_literal (literal)
Escapes a literal string, returning the escaped version

This method is only used to escape characters that are interpreted specially by the parameter substitution
system. For example, if the parameters are being substituted using python’s % operator then the ‘%’ sign
needs to be escaped (by doubling) in the output.

This method has nothing to do with turning python values into SQL escaped literals, that task is always
deferred to the underlying DB module to prevent SQL injection attacks.

The default implementation does nothing, in most cases that is the correct thing to do.

class pyslet.odata2.sglds.QMarkParams

Bases: pyslet.odataZ2.sqlds.SQLParams

k)

A class for building parameter lists using ‘?” syntax.

class pyslet.odata2.sglds.NumericParams

Bases: pyslet.odata2.sqlds.SQLParams

A class for building parameter lists using “:1°, :2°,... syntax

class pyslet.odata2.sglds.NamedParams

Bases: pyslet.odataZ.sqglds.SQLParams
A class for building parameter lists using “:A’, :B”,... syntax

Although there is more freedom with named parameters, in order to support the ordered lists of the other formats
we just invent parameter names using ‘:p0’, “:p1’, etc.

204

Chapter 4. The Open Data Protocol (OData)

Pyslet Documentation, Release 0.6.20160201

Misc Definitions

pyslet.odata2.sqlds.SQL_TIMEOUT = 90
int(x=0) -> int or long int(x, base=10) -> int or long

Convert a number or string to an integer, or return O if no arguments are given. If x is floating point, the
conversion truncates towards zero. If x is outside the integer range, the function returns a long instead.

If x is not a number or if base is given, then x must be a string or Unicode object representing an integer literal
in the given base. The literal can be preceded by ‘+’ or ‘-* and be surrounded by whitespace. The base defaults

to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer literal. >>>
int(‘Ob100’, base=0) 4

class pyslet.odata?2.sqglds.UnparameterizedLiteral (value)
Bases: pyslet.odata2.core.LiteralExpression

Class used as a flag that this literal is safe and does not need to be parameterized.

This is used in the query converter to prevent things like this happening when the converter itself constructs a
LIKE expression:

"name" LIKE ?+7?+? ; params=[u'$',u"Smith",u'%']

pyslet.odata2.sglds.SQLOperatorPrecedence = {‘>=": 4, ‘<>’: 4, ‘<=": 4, ‘AND’: 2, ‘LIKE’: 4, ‘+’: 5, “*’: 6, ¢-*: 5, ¢
Look-up table for SQL operator precedence calculations.

The keys are strings representing the operator, the values are integers that allow comparisons for operator prece-
dence. For example:

SQLOperatorPrecedence['+']<SQLOperatorPrecedence['*"']
SQLOperatorPrecedence['<']==SQLOperatorPrecedence['>"]

class pyslet.odata?2.sglds.DummyLock
Bases: object

An object to use in place of a real Lock, can always be acquired

Exceptions

class pyslet.odata2.sglds.DatabaseBusy
Bases: pyslet.odata2.sqglds.SQLError
Raised when a database connection times out.

class pyslet.odata2.sglds.SQLError
Bases: exceptions.Exception

Base class for all module exceptions.

4.3.7 OData Server Reference

4.3. OData Reference 205

Pyslet Documentation, Release 0.6.20160201

206 Chapter 4. The Open Data Protocol (OData)

CHAPTER 5

Hypertext Transfer Protocol (RFC2616)

This sub-package defines functions and classes for working with HTTP as defined by RFC2616:
http://www.ietf.org/rfc/rfc2616.txt and RFC2617: http://www.ietf.org/rfc/rfc2617.txt

The purpose of this module is to expose some of the basic constructs (including the synax of protocol components) to
allow them to be used normatively in other contexts. The module also contains a functional HTTP client designed to
support non-blocking and persistent HTTP client operations.

5.1 HTTP Client

5.1.1 Sending Requests

Here is a simple example of Pyslet’s HTTP support in action from the python interpreter:

>>> import pyslet.http.client as http

>>> ¢ = http.Client ()

>>> r = http.ClientRequest ('http://odata.pyslet.org'")
>>> c.process_request (r)

>>> r.response.status

200

>>> print r.response.get_content_type ()

text/html; charset=UTF-8

>>> print r.response.entity_body.getvalue ()

<html>

<head><title>Pyslet Home</title></head>

<body>

<p><img src="logoc—-large.png" width="1024"
</body>

</html>

>>> c.close()

In its simplest form there are three steps required to make an HTTP request, firstly you need to create a Client object.
The purpose of the Client object is sending requests and receiving responses. The second step is to create a ClientRe-
quest object describing the request you want to make. For a simple GET request you only need to specify the URL.
The third step is to instruct the Client to process the request. Once this method returns you can examine the request’s
associated response. The response’s entity body is written to a StringlO object by default.

The request and response objects are both derived classes of a basic HTTP Message class. This class has methods for
getting and setting headers. You can use the basic get_header () and set_header () to set headers from strings
or, where provided, you can use special wrapper methods such as get_content_type () to get and set headers
using special-purpose class objects that represent parsed forms of the expected value. In the case of Content-Type

207

/></p>

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt

Pyslet Documentation, Release 0.6.20160201

headers the result is a MediaType () object. Providing these special object types is one of the main reasons why
Pyslet’s HTTP support is different from other clients. By exposing these structures you can reuse HTTP concepts in
other contexts, particularly useful when other technical specifications make normative references to them.

Here is a glimpse of what you can do with a parsed media type, continuing the above example:

>>> type = r.response.get_content_type()

>>> type

MediaType ('text', "html', {'charset': ('charset', 'UTF-8"')})
>>> type.type

'text'

>>> type.subtype

'html'

>>> type['charset']

'UTF-8"

>>> type['name']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "pyslet/http/params.py", line 382, in _ getitem_
repr (key))
KeyError: "MediaType instance has no parameter 'name'"
>>>

There are lots of other special get_ and set_ methods on the Message, Request and Response objects.

5.1.2 Pipelining
One of the use cases that Pyslet’s HTTP client is designed to cover is reusing an HTTP connection to make multiple

requests to the same host. The example above takes care to close the Client object when we’re done because otherwise
it would leave the connection to the server open ready for another request.

5.1.3 Reference

The client module imports the grammar, params, messages and auth modules and these can therefore be accessed
using a single import in your code. For example:

import pyslet.http.client as http
type = http.params.MediaType ('application', 'xml')

For more details of the objects exposed by those modules see pyslet.http.grammar,
pyslet.http.params, pyslet.http.messagesand pyslet.http.auth.

class pyslet.http.client .Client (max_connections=100, ca_certs=None, timeout=None,

max_inactive=None)
Bases: pyslet.pep8.PEP8Compatibility, object

An HTTP client

Note: In Pyslet 0.4 and earlier the name HTTPRequestManager was used, this name is still available as an alias
for Client.

The object manages the sending and receiving of HTTP/1.1 requests and responses respectively. There are a
number of keyword arguments that can be used to set operational parameters:

208 Chapter 5. Hypertext Transfer Protocol (RFC2616)

Pyslet Documentation, Release 0.6.20160201

max_connections The maximum number of HTTP connections that may be open at any one time. The method
queue_request () will block (or raise RequestManagerBusy) if an attempt to queue a request
would cause this limit to be exceeded.

timeout The maximum wait time on the connection. This is not the same as a limit on the total time to receive
a request but a limit on the time the client will wait with no activity on the connection before assuming
that the server is no longer responding. Defaults to None, no timeout.

max_inactive (None) The maximum time to keep a connection inactive before terminating it. By default,
HTTP connections are kept open when the protocol allows. These idle connections are kept in a pool and
can be reused by any thread. This is useful for web-service type use cases (for which Pyslet has been
optimised) but it is poor practice to keep these connections open indefinitely and anyway, most servers
will hang up after a fairly short period of time anyway.

If not None, this setting causes a cleanup thread to be created that calls the idle cleanup () method
periodically passing this setting value as its argument.

ca_certs The file name of a certificate file to use when checking SSL connections. For more information see
http://docs.python.org/2.7/library/ssl.html

In practice, there seem to be serious limitations on SSL connections and certificate validation in Python
distributions linked to earlier versions of the OpenSSL library (e.g., Python 2.6 installed by default on OS
X and Windows).

Warning: By default, ca_certs is optional and can be passed as None. In this mode certificates will not be
checked and your connections are not secure from man in the middle attacks. In production use you should
always specify a certificate file if you expect to use the object to make calls to https URLSs.

Although max_connections allows you to make multiple connections to the same host+port the request manager
imposes an additional restriction. Each thread can make at most 1 connection to each host+port. If multiple
requests are made to the same host+port from the same thread then they are queued and will be sent to the
server over the same connection using HTTP/1.1 pipelining. The manager (mostly) takes care of the following
restriction imposed by RFC2616:

Clients SHOULD NOT pipeline requests using non-idempotent methods or non-idempotent se-
quences of methods

In other words, a POST (or CONNECT) request will cause the pipeline to stall until all the responses have
been received. Users should beware of non-idempotent sequences as these are not automatically detected by the
manager. For example, a GET,PUT sequence on the same resource is not idempotent. Users should wait for the
GET request to finish fetching the resource before queuing a PUT request that overwrites it.

In summary, to take advantage of multiple simultaneous connections to the same host+port you must use multi-
ple threads.

ConnectionClass
alias of Connection

httpUserAgent = None
The default User-Agent string to use, defaults to a string derived from the installed version of Pyslet, e.g.:

pyslet 0.5.20140727 (http.client.Client)

classmethod get_server_ certificate_chain (url, method=None, options=None)
Returns the certificate chain for an https URL

url A URT instance. This must use the https scheme or ValueError will be raised.

method (SSL.TLSvl_METHOD) The SSL method to use, one of the constants from the pyOpenSSL
module.

5.1.

HTTP Client 209

http://docs.python.org/2.7/library/ssl.html

Pyslet Documentation, Release 0.6.20160201

options (None) The SSL options to use, as defined by the pyOpenSSL module. For example,
SSL.OP_NO_SSLv2.

This method requires pyOpenSSL to be installed, if it isn’t then a RuntimeError is raised.

The address and port is extracted from the URL and interrogated for its certificate chain. No validation is
performed. The result is a string containing the concatenated PEM format certificate files. This string is
equivalent to the output of the following UNIX command:

echo | openssl s_client -showcerts -connect host:port 2>&1 |
sed -ne '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p'

The purpose of this method is to provide something like the ssh-style trust whereby you can download the
chain the first time you connect, store it to a file and then use that file for the ca_certs argument for SSL
validation in future.

If the site certificate changes to one that doesn’t validate to a certificate in the same chain then the SSL
connection will fail.

As this method does no validation there is no protection against a man-in-the-middle attack when you use
this method. You should only use this method when you trust the machine and connection you are using
or when you have some other way to independently verify that the certificate chain is good.

queue_request (request, timeout=None)
Starts processing an HTTP request

request A messages.Request object.

timeout Number of seconds to wait for a free connection before timing out. A timeout raises
RequestManagerBusy

None means wait forever, 0 means don’t block.

The default implementation adds a User-Agent header from ht t pUserAgent if none has been specified
already. You can override this method to add other headers appropriate for a specific context but you must
pass this call on to this implementation for proper processing.

active_count ()
Returns the total number of active connections.

thread_active_ count ()
Returns the total number of active connections associated with the current thread.

thread_task (timeout=None)
Processes all connections bound to the current thread then blocks for at most timeout (0 means don’t block)
while waiting to send/receive data from any active sockets.

Each active connection receives one call to Connection.connection_task () There are some sit-
uations where this method may still block even with timeout=0. For example, DNS name resolution and
SSL handshaking. These may be improved in future.

Returns True if at least one connection is active, otherwise returns False.

thread_1loop (timeout=60)
Repeatedly calls thread task () until it returns False.

process_request (request, timeout=60)
Process an messages.Message object.

The request is queued and then t hread_loop () is called to exhaust all HTTP activity initiated by the
current thread.

idle_cleanup (max_inactive=15)
Cleans up any idle connections that have been inactive for more than max_inactive seconds.

210 Chapter 5. Hypertext Transfer Protocol (RFC2616)

Pyslet Documentation, Release 0.6.20160201

active_cleanup (max_inactive=90)
Clean up active connections that have been inactive for more than max_inactive seconds.

This method can be called from any thread and can be used to remove connections that have been aban-
doned by their owning thread. This can happen if the owning thread stops calling thread task ()
leaving some connections active.

Inactive connections are killed using Connection.kill () and then removed from the active list.
Should the owning thread wake up and attempt to finish processing the requests a socket error or
messages.HTTPException will be reported.

close ()
Closes all connections and sets the manager to a state where new connections cannot not be created.

Active connections are killed, idle connections are closed.

add_credentials (credentials)
Addsapyslet.http.auth.Credentials instance to this manager.

Credentials are used in response to challenges received in HTTP 401 responses.

remove_credentials (credentials)
Removes credentials from this manager.

credentials A pyslet.http.auth.Credentials instance previously added with
add _credentials ().

If the credentials can’t be found then they are silently ignored as it is possible that two threads may inde-
pendently call the method with the same credentials.

dnslookup (host, port)
Given a host name (string) and a port number performs a DNS lookup using the native socket.getaddrinfo
function. The resulting value is added to an internal dns cache so that subsequent calls for the same host
name and port do not use the network unnecessarily.

If you want to flush the cache you must do so manually using f1ush_dns ().

flush dns ()
Flushes the DNS cache.

find_credentials (challenge)
Searches for credentials that match challenge

find credentials_by url (url)
Searches for credentials that match url

class pyslet.http.client.ClientRequest (url, method="GET", res_body=None, proto-

col=<pyslet.http.params.HTTPVersion object>,
auto_redirect=True, max_retries=3, min_retry_time=5,
**kwargs)

Bases: pyslet.http.messages.Request
Represents an HTTP request.

To make an HTTP request, create an instance of this class and then pass it to an C11ient instance using either
Client.queue_request () or Client.process_request ().

url An absolute URI using either http or https schemes. A pyslet.rfc2396.URT instance or an object that
can be passed to its constructor.

And the following keyword arguments:

method A string. The HTTP method to use, defaults to “GET”

5.1. HTTP Client 211

Pyslet Documentation, Release 0.6.20160201

entity_body A string or stream-like object containing the request body. Defaults to None meaning no message
body. For stream-like objects the tell and seek methods must be supported to enable resending the request
if required.

res_body A stream-like object to write data to. Defaults to None, in which case the response body is returned
as a string in the res_body.

protocol An params.HTTPVersion object, defaults to HTTPVersion(1,1)
autoredirect Whether or not the request will follow redirects, defaults to True.

max_retries The maximum number of times to attempt to resend the request following an error on the con-
nection or an unexpected hang-up. Defaults to 3, you should not use a value lower than 1 because, when
pipelining, it is always possible that the server has gracefully closed the socket and we won’t notice until
we’ve sent the request and get 0 bytes back on recv. Although ‘normal’ this scenario counts as a retry.

manager = None
the C1ient object that is managing us

connection = None
the Connection object that is currently sending us

status = None
the status code received, 0 indicates a failed or unsent request

error = None
If status == 0, the error raised during processing

scheme = None
the scheme of the request (http or https)

hostname = None
the hostname of the origin server

port = None
the port on the origin server

url = None
the full URL of the requested resource

res_body = None
the response body received (only used if not streaming)

auto_ redirect = None
whether or not auto redirection is in force for 3xx responses

max_retries = None
the maximum number of retries we’ll attempt

nretries = None
the number of retries we’ve had

response = None
the associated C1ientResponse

send_pipe = None
the send pipe to use on upgraded connections

recv_pipe = None
the recv pipe to use on upgraded connections

set_url (url)
Sets the URL for this request

212

Chapter 5. Hypertext Transfer Protocol (RFC2616)

Pyslet Documentation, Release 0.6.20160201

This method sets the Host header and the following local attributes: scheme, hostname, port and
request_uri.

can_retry ()
Returns True if we reconnect and retry this request

set_client (client)
Called when we are queued for processing.

client an C1ient instance

connect (connection, send_pos)
Called when we are assigned to an HTTPConnection”

connection A Connection object

send_pos The position of the sent bytes pointer after which this request has been (or at least has started
to be) sent.

disconnect (send_pos)
Called when the connection has finished sending us

This may be before or after the response is received and handled!

send_pos The number of bytes sent on this connection before the disconnect. This value is compared
with the value passed to connect () to determine if the request was actually sent to the server or
abandoned without a byte being sent.

For idempotent methods we lose a life every time. For non-idempotent methods (e.g., POST) we do
the same except that if we been (at least partially) sent then we lose all lives to prevent “indeterminate
results”.

finished ()
Called when we have a final response and have disconnected from the connection There is no guarantee
that the server got all of our data, it might even have returned a 2xx series code and then hung up before
reading the data, maybe it already had what it needed, maybe it thinks a 2xx response is more likely to
make us go away. Whatever. The point is that you can’t be sure that all the data was transmitted just
because you got here and the server says everything is OK

class pyslet.http.client.ClientResponse (request, **kwargs)

Bases: pyslet.http.messages.Response

handle_ headers ()
Hook for response header processing.

This method is called when a set of response headers has been received from the server, before the as-
sociated data is received! After this call, recv will be called zero or more times until handle_message or
handle_disconnect is called indicating the end of the response.

Override this method, for example, if you want to reject or invoke special processing for certain responses
(e.g., based on size) before the data itself is received. To abort the response, close the connection using
Connection.request_disconnect ().

Override the Finished () method instead to clean up and process the complete response normally.

handle_message ()
Hook for normal completion of response

handle_disconnect (err)
Hook for abnormal completion of the response

Called when the server disconnects before we’ve completed reading the response. Note that if we are
reading forever this may be expected behaviour and err may be None.

5.1.

HTTP Client 213

Pyslet Documentation, Release 0.6.20160201

We pass this information on to the request.

5.1.4 Exceptions

class pyslet.http.client .RequestManagerBusy
Bases: pyslet.http.messages.HTTPException
The HTTP client is busy

Raised when attempting to queue a request and no connections become available within the specified timeout.

5.2 HTTP Authentication

5.3 HTTP Messages

This modules defines objects that represent the values of HTTP messages and message headers and a special-purpose
parser for parsing them from strings of octets.

5.3.1 Messages

class pyslet.http.messages.Request (**kwargs)
Bases: pyslet.http.messages.Message

method = None
the http method, always upper case, e.g., ‘POST’

request_uri = None
the request uri as it appears in the start line

response = None
the associated response

send_start ()
Returns the start-line for this message

send_transferlength ()
Adds request-specific processing for transfer-length

Request messages that must not have a message body are automatically detected and will raise an exception
if they have a non-None body.

Request messages that may have a message body but have a transfer-length of 0 bytes will have a Content-
Length header of 0 added if necessary

get_start ()
Returns the start line

is_idempotent ()
Returns True if this is an idempotent request

extract_authority ()
Extracts the authority from the request

If the request_uri is an absolute URL then it is updated to contain the absolute path only and the Host
header is updated with the authority information (host[:port]) extracted from it, otherwise the Host header
is read for the authority information. If there is no authority information in the request None is returned.

214 Chapter 5. Hypertext Transfer Protocol (RFC2616)

Pyslet Documentation, Release 0.6.20160201

If the url contains user information it raises NotImplementedError

get_accept ()
Returns an AcceptList instance or None if no “Accept” header is present.

set_accept (accept_value)
Sets the “Accept” header, replacing any existing value.

accept_value A Acceptlist instance or a string that one can be parsed from.

get_accept_charset ()
Returns an AcceptCharsetList instance or None if no “Accept-Charset” header is present.

set_accept_charset (accept_value)
Sets the “Accept-Charset” header, replacing any existing value.

accept_value A AcceptCharsetList instance or a string that one can be parsed from.

get_accept_encoding ()
Returns an AcceptEncodingList instance or None if no “Accept-Encoding” header is present.

set_accept_encoding (accept_value)
Sets the “Accept-Encoding” header, replacing any existing value.

accept_value A AcceptEncodingList instance or a string that one can be parsed from.

get_cookie ()
Reads the ‘Cookie’ header(s)

Returns a dictionary of cookies. If there are multiple values for a cookie the dictionary value is a set,
otherwise it is a string.

set_cookie (cookie_list)
Set a “Set-Cookie” header

cookie_list alist of cookies such as would be returned by pysiet.http.cookie.CookieStore.search().
If cookie list is None the Cookie header is removed.

class pyslet.http.messages.Response (request, **kwargs)
Bases: pyslet.http.messages.Message

REASON = {200: ‘OK’, 201: ‘Created’, 202: ‘Accepted’, 203: ‘Non-Authoritative Information’, 204: ‘No Content’, 205: ‘R
A dictionary mapping status code integers to their default message defined by RFC2616

send_start ()
Returns the start-line for this message

get_accept_ranges ()
Returns an AcceptRanges instance or None if no “Accept-Ranges” header is present.

set_accept_ranges (accept_value)
Sets the “Accept-Ranges” header, replacing any existing value.

accept_value A AcceptRanges instance or a string that one can be parsed from.

get_age ()
Returns an integer or None if no “Age” header is present.

set_age (age)
Sets the “Age” header, replacing any existing value.

age an integer or long value or None to remove the header

get_etag()
Returns a Ent it yTag instance parsed from the ETag header or None if no “ETag” header is present.

5.3. HTTP Messages 215

Pyslet Documentation, Release 0.6.20160201

set_etag (erag)
Sets the “ETag” header, replacing any existing value.

etag a EntityTag instance or None to remove any ETag header.

get_location ()
Returns a pyslet.rfc2396. URT instance created from the Location header.

If no Location header was present None is returned.

set_location (location)
Sets the Location header

location: a pysliet.rfc2396.URT instance or a string from which one can be parsed. If None, the
Location header is removed.

get_www_authenticate ()
Returns a list of Challenge instances.

If there are no challenges an empty list is returned.

set_www_authenticate (challenges)
Sets the “WWW-Authenticate” header, replacing any exsiting value.

challenges a list of Challenge instances

get_set_cookie ()
Reads all ‘Set-Cookie’ headers

Returns a list of Cook i e instances

set_set_cookie (cookie, replace=False)
Set a “Set-Cookie” header

cookie a Cookie instance
replace=True Remove all existing cookies from the response
replace=False Add this cookie to the existing cookies in the response (default value)

If called multiple times the header value will become a list of cookie values. No folding together is
performed.

If cookie is None all Set-Cookie headers are removed, implying replace mode.

class pyslet.http.messages.Message (entity_body=None, protocol=<pyslet.http.params. HT TP Version

object>, send_stream=None, recv_stream=None)
Bases: pyslet.pep8.PEP8Compatibility, object

An abstract class to represent an HTTP message.
The methods of this class are thread safe, using a 1ock to protect all access to internal structures.

The generic syntax of a message involves a start line, followed by a number of message headers and an optional
message body.

entity_body The optional entity_body parameter is a byte string containing the entity body, a file like object or
object derived from io.RawlOBase. There are restrictions on the use of non-seekable streams, in particular
the absence of a working seek may affect redirects and retries.

There is a subtle difference between passing None, meaning no entity body and an empty string ’. The
difference is that an empty string will generate a Content-Length header indicating a zero length message
body when the message is sent, whereas None will not. Some message types are not allowed to have an
entity body (e.g., a GET request) and these messages must not have a message body (even a zero length
one) or an error will be raised.

216 Chapter 5. Hypertext Transfer Protocol (RFC2616)

Pyslet Documentation, Release 0.6.20160201

File-like objects do not generate a Content-Length header automatically as there is no way to determine
their size when sending, however, if a Content-Length header is set explicitly then it will be used to
constrain the amount of data read from the entity_body.

GENERAL_HEADERS = {‘transfer-encoding’: ‘Transfer-Encoding’, ‘connection’: ‘Connection’, ‘upgrade’: ‘Upgrade’, ‘pr
a mapping from lower case header name to preferred case name

MAX READAHEAD = 131072
A constant used to control the maximum read-ahead on an entity body’s stream. Entity bodies of undeter-
mined length that exceed this size cannot be sent in requests to HTTP/1.0 server.

keep_alive = None
by default we’ll keep the connection alive

set_protocol (version)
Sets the protocol

version An params.HTTPVersion instance or a string that can be parsed for one.

clear_keep_alive ()
Clears the keep_alive flag on this message

The flag always starts set to True and cannot be set once cleared.

start_sending (protocol=<pyslet.http.params. HTTPVersion object>)
Starts sending this message

protocol The protocol supported by the target of the message, defaults to HTTP/1.1 but can be overridden
when the recipient only supports HTTP/1.0. This has the effect of suppressing some features.

The message is sent using the send_ family of methods.

send_start ()
Returns the start-line for this message

send_header ()
Returns a data string ready to send to the server

send_transferlength ()
Calculates the transfer length of the message

It will read the Transfer-Encoding or Content-Length headers to determine the length.

If the length of the entity body is known, this method will verify that it matches the Content-Length or set
that header’s value accordingly.

If the length of the entity body is not known, this method will set a Transfer-Encoding header.

send_body ()
Returns (part of) the message body

Returns an empty string when there is no more data to send.
Returns None if the message is read blocked.

start_receiving()
Starts receiving this message

The message is received using the recv_mode () and recv () methods.

RECV_HEADERS = -3
recv_mode constant for a set of header lines terminated by CRLF, followed by a blank line.

RECV_LINE = -2
recv_mode constant for a single CRLF terminated line

5.3. HTTP Messages 217

Pyslet Documentation, Release 0.6.20160201

RECV_ALL=-1

recv_mode constant for unlimited data read

recv_mode ()

Indicates the type of data expected during recv
The result is interpreted as follows, using the recv_mode constants defined above:

RECV_HEADERS this message is expecting a set of headers, terminated by a blank line. The next call
to recv must be with a list of binary CRLF terminated strings the last of which must the string CRLF
only.

RECV_LINE this message is expecting a single terminated line. The next call to recv must be with a
binary string representing a single terminated line.

integer > 0 the minimum number of bytes we are waiting for when data is expected. The next call to recv
must be with a binary string of up to but not exceeding integer number of bytes

0 we are currently write-blocked but still need more data, the next call to recv must pass None to give the
message time to write out existing buffered data.

RECV_ALL we want to read until the connection closes, the next call to recv must be with a binary
string. The string can be of any length but an empty string signals the end of the data.

None the message is not currently in receiving mode, calling recv will raise an error.

recv_start (start_line)

Receives the start-line

Implemented differently for requests and responses.

handle headers ()

Hook for processing the message headers

This method is called after all headers have been received but before the message body (if any) is received.
Derived classes should always call this implementation first (using super) to ensure basic validation is
performed on the message before the body is received.

recv_transferlength ()

Called to calculate the transfer length when receiving

The values of transferlength and transferchunked are set by this method. The default imple-
mentation checks for a Transfer-Encoding header and then a Content-Length header in that order.

If it finds neither then behaviour is determined by the derived classes Request and Response which
wrap this implementation.

RFC2616:

If a Transfer-Encoding header field is present and has any value other than “identity”, then the
transfer-length is defined by use of the “chunked” transfer-coding, unless the message is termi-
nated by closing the connection

This is a bit weird, if I have a non-identity value which fails to mention ‘chunked’ then it seems like I can’t
imply chunked encoding until the connection closes. In practice, when we handle this case we assume
chunked is not being used and read until connection close.

handle_message ()

Hook for processing the message

This method is called after the entire message has been received, including any chunk trailer.

get_headerlist ()

Returns all header names

218

Chapter 5. Hypertext Transfer Protocol (RFC2616)

Pyslet Documentation, Release 0.6.20160201

The list is alphabetically sorted and lower-cased.

has_header (field_name)
True if this message has a header with field_name

get_header (field_name, list_mode=False)
Returns the header with field_name as a string.

list_mode=False In this mode, get_header always returns a single string, this isn’t always what you want

93 99

as it automatically ‘folds’ multiple headers with the same name into a string using ”, ” as a separator.
list_ mode=True In this mode, get_header always returns a list of strings.
If there is no header with field_name then None is returned in both modes.

set_header (field_name, field_value, append_mode=False)
Sets the header with field_name to the string field_value.

If field_value is None then the header is removed (if present).

If a header already exists with field_name then the behaviour is determined by append_mode:
append_mode==True field_value is joined to the existing value using ”, ” as a separator.
append_mode==False (Default) field value replaces the existing value.

get_allow ()
Returns an A1 1ow instance or None if no “Allow” header is present.

set_allow (allowed)
Sets the “Allow” header, replacing any existing value.

allowed A A11ow instance or a string that one can be parsed from.
If allowed is None any existing Allow header is removed.

get_authorization ()
Returns a Credentials instance.

If there are no credentials None returned.

set_authorization (credentials)
Sets the “Authorization” header

credentials a Credentials instance

get_cache_control ()
Returns an CacheCont rol instance or None if no “Cache-Control” header is present.

set_cache_control (cc)
Sets the “Cache-Control” header, replacing any existing value.

cc A CacheControl instance or a string that one can be parsed from.
If cc is None any existing Cache-Control header is removed.

get_connection ()
Returns a set of connection tokens from the Connection header

If no Connection header was present an empty set is returned. All tokens are returned as lower case.

set_connection (connection_tokens)
Set the Connection tokens from an iterable set of connection_tokens

If the list is empty any existing header is removed.

. HTTP Messages 219

Pyslet Documentation, Release 0.6.20160201

get_content_encoding ()
Returns a list of lower-cased content-coding tokens from the Content-Encoding header

If no Content-Encoding header was present an empty list is returned.
Content-codings are always listed in the order they have been applied.

set_content_encoding (content_codings)
Sets the Content-Encoding header from a an iterable list of content-coding tokens. If the list is empty any
existing header is removed.

get_content_language ()
Returns a list of LanguageTag instances from the Content-Language header

If no Content-Language header was present an empty list is returned.

set_content_language (lang_list)
Sets the Content-Language header from a an iterable list of LanguageTag instances.

get_content_length ()
Returns the integer size of the entity from the Content-Length header

If no Content-Length header was present None is returned.

set_content_length (length)
Sets the Content-Length header from an integer or removes it if length is None.

get_content_location ()
Returns a pyslet.rfc2396.URI instance created from the Content-Location header.

If no Content-Location header was present None is returned.

set_content_ location (location)
Sets the Content-Location header from location, a pyslet.rfc2396.URT instance or removes it if
location is None.

get_content_md5 ()
Returns a 16-byte binary string read from the Content-MD5 header or None if no Content-MDS5 header
was present.

The result is suitable for comparing directly with the output of the Python’s MDS5 digest method.

set_content_mdS5 (digest)
Sets the Content-MDS5 header from a 16-byte binary string returned by Python’s MD35 digest method or
similar. If digest is None any existing Content-MD35 header is removed.

get_content_range ()
Returns a ContentRange instance parsed from the Content-Range header.

If no Content-Range header was present None is returned.

set_content_range (range)
Sets the Content-Range header from range, a Content Range instance or removes it if range is None.

get_content_type ()
Returns a MediaType instance parsed from the Content-Type header.

If no Content-Type header was present None is returned.

set_content_type (mtype=None)
Sets the Content-Type header from mtype, a MediaType instance, or removes it if mtype is None.

get_date()
Returns the value of the Date header.

220

Chapter 5. Hypertext Transfer Protocol (RFC2616)

Pyslet Documentation, Release 0.6.20160201

The return value is a params . FullDate instance. If no Date header was present None is returned.

set_date (date=None)
Sets the value of the Date header

date aparams.FullDate instance or None to remove the Date header.

To set the date header to the current date use:

set_date (params.FullDate.from_now_utc())

get_last_modified()
Returns the value of the Last-Modified header

The result is a params .FullDate instance. If no Last-Modified header was present None is returned.

set_last modified (date=None)
Sets the value of the Last-Modified header field

date a FullDate instance or None to remove the header

To set the Last-Modified header to the current date use:

set_last_modified(params.FullDate.from_now_utc())

get_transfer_encoding()
Returns a list of params . TransferEncoding

If no TransferEncoding header is present None is returned.

set_transfer_ encoding (field_value)
Set the Transfer-Encoding header

field_value A list of params.TransferEncoding instances or a string from which one can be
parsed. If None then the header is removed.

set_upgrade (protocols)
Sets the “Upgrade” header, replacing any existing value.

protocols An iterable list of params .ProductToken instances.

In addition to setting the upgrade header this method ensures that “upgrade” is present in the Connection
header.

5.3.2 General Header Types
class pyslet.http.messages.CacheControl (*args)
Bases: object
Represents the value of a Cache-Control general header.
The built-in str function can be used to format instances according to the grammar defined in the specification.

Instances are immutable, they are constructed from a list of arguments which must not be empty. Arguments are
treated as follows:

string a simple directive with no parmeter
2-tuple of string and non-tuple a directive with a simple parameter

2-tuple of string and tuple a directive with a quoted list-style parameter

5.3. HTTP Messages 221

Pyslet Documentation, Release 0.6.20160201

Instances behave like read-only lists implementing len, indexing and iteration in the usual way. Instances also
support basic key lookup of directive names by implementing __contains__ and __getitem__ (which returns
None for defined directives with no parameter and raises KeyError for undefined directives). Instances are not
truly dictionary like.

classmethod from_str (source)
Create a Cache-Control value from a source string.

5.3.3 Request Header Types
class pyslet .http.messages.AcceptList (*args)
Bases: object
Represents the value of an Accept header
The built-in str function can be used to format instances according to the grammar defined in the specification.

Instances are immutable, they are constructed from one or more Accept Item instances. There are no com-
parison methods.

Instances behave like read-only lists implementing len, indexing and iteration in the usual way.

select_type (mtype_list)
Returns the best match from mtype_list, a list of media-types

In the event of a tie, the first item in mtype_list is returned.

classmethod £from_str (source)
Create an AcceptList from a source string.

class pyslet .http.messages.MediaRange (type="*’, subtype="*", parameters={})
Bases: pyslet.http.params.MediaType

Represents an HTTP media-range.
The built-in str function can be used to format instances according to the grammar defined in the specification.

Instances are immutable, they define comparison methods and a hash implementation to allow them to be used
as keys in dictionaries. Quoting from the specification:

“Media ranges can be overridden by more specific media ranges or specific media types. If more
than one media range applies to a given type, the most specific reference has precedence.”

In other words, the following media ranges would be sorted in the order shown:
1.image/png
2.image/*
3.text/plain;charset=utf-8
4 text/plain
5.text/*
6.%/*

If we have two rules with identical precedence then we sort them alphabetically by type; sub-type and ultimately
alphabetically by parameters

classmethod from_ str (source)
Creates a media-rannge from a source string.

Unlike the parent media-type we ignore all spaces.

222 Chapter 5. Hypertext Transfer Protocol (RFC2616)

Pyslet Documentation, Release 0.6.20160201

match_media_type (miype)
Tests whether a media-type matches this range.

mtype A MediaType instance to be compared to this range.

The matching algorithm takes in to consideration wild-cards so that */* matches all types, image/* matches
any image type and so on.

If a media-range contains parameters then each of these must be matched exactly in the media-type being
tested. Parameter names are treated case-insensitively and any additional parameters in the media type are
ignored. As a result:

stext/plain does not match the range text/plain;charset=utf-8
eapplication/myapp;charset=utf-8;option=on does match the range application/myapp;option=on

class pyslet.http.messages.AcceptItem (range=MediaType(‘*’, ‘*’, (}), qvalue=1.0, exten-

sions={})
Bases: pyslet.http.messages.MediaRange

Represents a single item in an Accept header
The built-in str function can be used to format instances according to the grammar defined in the specification.

Instances are immutable, they define comparison methods and a hash implementation to allow them to be used
as keys in dictionaries.

Accept items are sorted by their media ranges. Equal media ranges sort by descending qvalue, for example:
text/plain;q=0.75 < text/plain;q=0.5
Extension parameters are ignored in all comparisons.

range = None
the MediaRange instance that is acceptable

g = None
the g-value (defaults to 1.0)

classmethod £rom_str (source)
Creates a single Acceptltem instance from a source string.

class pyslet.http.messages.AcceptCharsetItem (foken="*", gvalue=1.0)
Bases: pyslet.http.messages.AcceptToken

Represents a single item in an Accept-Charset header

class pyslet .http.messages.AcceptCharsetList (*args)
Bases: pyslet.http.messages.AcceptTokenList

Represents an Accept-Charset header

ItemClass
alias of AcceptCharsetItem

select_token (token_list)
Overridden to provide default handling of is0-8859-1

class pyslet.http.messages.AcceptEncodingItem (foken="*", gvalue=1.0)
Bases: pyslet.http.messages.AcceptToken

Represents a single item in an Accept-Encoding header

class pyslet.http.messages.AcceptEncodingList (*args)
Bases: pyslet.http.messages.AcceptTokenList

Represents an Accept-Encoding header

5.3. HTTP Messages 223

Pyslet Documentation, Release 0.6.20160201

ItemClass
alias of AcceptEncodingItem

select_token (token_list)
Overridden to provide default handling of identity

class pyslet.http.messages.AcceptLanguageltem (foken="*", gvalue=1.0)
Bases: pyslet.http.messages.AcceptToken

Represents a single item in an Accept-Language header.

class pyslet.http.messages.AcceptLanguageList (*args)
Bases: pyslet.http.messages.AcceptTokenList

Represents an Accept-Language header

ItemClass
the class used to create items in this token list

alias of AcceptLanguageItem

select_token (token_list)
Remapped to select_language ()

class pyslet.http.messages.AcceptToken (token="*", gvalue=1.0)
Bases: object

Represents a single item in a token-based Accept-* header
The built-in str function can be used to format instances according to the grammar defined in the specification.

Instances are immutable, they define comparison methods and a hash implementation to allow them to be used
as keys in dictionaries.

AcceptToken items are sorted by their token, with wild cards sorting behind specified tokens. Equal values sort
by descending qvalue, for example:

150-8859-2;q=0.75 < i50-8859-2;q=0.5

token = None
the token that is acceptable or “*” for any token

g = None
the g-value (defaults to 1.0)

classmethod from_str (source)
Creates a single AcceptToken instance from a source string.

class pyslet .http.messages.AcceptTokenList (*args)
Bases: object

Represents the value of a token-based Accept-* header
The built-in str function can be used to format instances according to the grammar defined in the specification.

Instances are immutable, they are constructed from one or more Accept Token instances. There are no com-
parison methods.

Instances behave like read-only lists implementing len, indexing and iteration in the usual way.

ItemClass
the class used to create new items in this list

alias of Accept Token

224 Chapter 5. Hypertext Transfer Protocol (RFC2616)

Pyslet Documentation, Release 0.6.20160201

select_token (token_list)
Returns the best match from token_list, a list of tokens.

In the event of a tie, the first item in token_list is returned.

classmethod from_str (source)
Create an AcceptTokenList from a source string.

5.3.4 Response Header Types
class pyslet .http.messages.AcceptRanges (*args)
Bases: object
Represents the value of an Accept-Ranges response header.
The built-in str function can be used to format instances according to the grammar defined in the specification.

Instances are immutable, they are constructed from a list of string arguments. If the argument list is empty then
a value of “none” is assumed.

Instances behave like read-only lists implementing len, indexing and iteration in the usual way. Comparison
methods are provided.

classmethod from_str (source)
Create an AcceptRanges value from a source string.

5.3.5 Entity Header Types
class pyslet.http.messages.Allow (*args)
Bases: object
Represents the value of an Allow entity header.
The built-in str function can be used to format instances according to the grammar defined in the specification.
Instances are immutable, they are constructed from a list of string arguments which may be empty.

Instances behave like read-only lists implementing len, indexing and iteration in the usual way. Comparison
methods are provided.

classmethod £rom_str (source)
Create an Allow value from a source string.

is_allowed (method)
Tests if method is allowed by this value.

class pyslet .http.messages.ContentRange (first_byte=None, last_byte=None, total_len=None)
Bases: object

Represents a single content range

first_byte Specifies the first byte of the range
last_byte Specifies the last byte of the range
total_len Specifies the total length of the entity

With no arguments an invalid range representing an unsatisfied range request from an entity of unknown length
is created.

If first_byte is specified on construction last_byte must also be specified or TypeError is raised.

The built-in str function can be used to format instances according to the grammar defined in the specification.

5.3. HTTP Messages 225

Pyslet Documentation, Release 0.6.20160201

Instances are immutable.

first_byte = None
first byte in the range

last_byte = None
last byte in the range

classmethod £rom_str (source)
Creates a single ContentRange instance from a source string.

is_wvalid()
Returns True if this range is valid, False otherwise.

A valid range is any non-empty byte range wholly within the entity described by the total length. Unsatis-
fied content ranges are treated as invalid.

5.3.6 Parsing Header Values
In most cases header values will be parsed automatically when reading them from messages. For completeness a
header parser is exposed to enable you to parse these values from more complex strings.

class pyslet .http.messages.HeaderParser (source, ignore_sp=True)
Bases: pyslet.http.params.ParameterParser

A special parser for parsing HTTP headers from TEXT

require_media_range ()
Parses a MediaRange instance.

Raises BadSyntax if no media-type was found.

require_accept_item()
Parses a Accept Item instance

Raises BadSyntax if no item was found.

require_accept_list ()
Parses a Accept List instance

Raises BadSyntax if no valid items were found.

require_accept_token (cls=<class ‘pyslet.http.messages.AcceptToken’>)
Parses a single Accept Token instance

Raises BadSyntax if no item was found.
cls An optional sub-class of Accept Token to create instead.

require_accept_token_list (cls=<class ‘pyslet.http.messages.AcceptTokenList’>)
Parses a list of token-based accept items

Returns a Accept TokenLi st instance. If no tokens were found then an empty list is returned.
cls An optional sub-class of Accept TokenList to create instead.

require_contentrange ()
Parses a ContentRange instance.

require_product_token_list ()
Parses a list of product tokens

Returns a list of params.ProductToken instances. If no tokens were found then an empty list is
returned.

226 Chapter 5. Hypertext Transfer Protocol (RFC2616)

Pyslet Documentation, Release 0.6.20160201

5.3.7 Exceptions
class pyslet.http.messages.HTTPException
Bases: exceptions.Exception

Class for all HTTP message-related errors.

5.4 HTTP Protocol Parameters

This section defines functions for handling basic parameters used by HTTP. Refer to Section 3 of RFC2616 for details.

The approach taken by this module is provide classes for each of the parameter types. Most classes have a class method
“from_str’ which returns a new instance parsed from a string and performs the reverse transformation to the builtin str
function. Instances are generally immutable objects which is consistent with them representing values of parameters
in the protocol.

class pyslet.http.params.HTTPVersion (major=1, minor=None)
Bases: object

Represents the HTTP Version.

major The (optional) major version

minor The (optional) minor version

The default instance, HTTPVersion(), represents HTTP/1.1

HTTPVersion objects are immutable, they define comparison functions (such that 1.1 > 1.0 and 1.2 < 1.25) and
a hash implementation is provided.

On conversion to a string the output is of the form:

HTTP/<major>.<minor>

For convenience, the constants HTTP_1p1 and HTTP_1p0 are provided for comparisons, e.g.:

if HTTPVersion.from_str (version_str) == HTTP_1lpO0:
do something to support a legacy system...

major = None
major protocol version (read only)

minor = None
minor protocol version (read only)

classmethod £rom_str (source)
Constructs an HTTPVersion object from a string.

class pyslet.http.params.HTTPURL (octets="http://localhost/’, host=None, path=None, query=None,

fragment=None)
Bases: pyslet.rfc2396.ServerBasedURL

Represents http URLs

DEFAULT_PORT = 80
the default HTTP port

canonicalize ()
Returns a canonical form of this URI

5.4. HTTP Protocol Parameters 227

Pyslet Documentation, Release 0.6.20160201

class pyslet.http.params.HTTPSURL (octets="https://localhost/’)
Bases: pyslet.http.params.HTTPURL

Represents https URLSs

DEFAULT_PORT = 443
the default HTTPS port

class pyslet.http.params.FullDate (src=None, date=None, time=None)
Bases: pyslet.iso8601.TimePoint

A special sub-class for HTTP-formatted dates

classmethod from_http_str (source)
Returns an instance parsed from an HTTP formatted string

class pyslet.http.params.TransferEncoding (token="chunked’, parameters={})
Bases: object

Represents an HTTP transfer-encoding.
token The transfer encoding identifier, defaults to “chunked”

parameters A parameter dictionary mapping parameter names to tuples of strings: (parameter name, parameter
value)

The built-in str function can be used to format instances according to the grammar defined in the specification.
Instances are immutable, they define comparison methods and a hash implementation.

token = None
the lower-cased transfer-encoding token (defaults to “chunked”)

parameters = None
declared extension parameters

classmethod from_str (source)
Parses the transfer-encoding from a source string.

If the encoding is not parsed correctly BadSyntax is raised.

classmethod 1ist_from str (source)
Creates a list of transfer-encodings from a string

Transfer-encodings are comma-separated

class pyslet.http.params.Chunk (size=0, extensions=None)
Bases: object

Represents an HTTP chunk header
size The size of this chunk (defaults to 0)

extensions A parameter dictionary mapping parameter names to tuples of strings: (chunk-ext-name, chunk-ext-
val)

The built-in str function can be used to format instances according to the grammar defined in the specification.
The resulting string does not include the trailing CRLE.

Instances are immutable, they define comparison methods and a hash implementation.

size = None
the chunk-size

classmethod £rom_str (source)
Parses the chunk header from a source string of TEXT.

228 Chapter 5. Hypertext Transfer Protocol (RFC2616)

Pyslet Documentation, Release 0.6.20160201

If the chunk header is not parsed correctly BadSyntax is raised. The header includes the chunk-size and
any chunk-extension parameters but it does not include the trailing CRLF or the chunk-data

class pyslet .http.params.MediaType (type=’application’, subtype="octet-stream’, parameters={})
Bases: object

Represents an HTTP media-type.

The built-in str function can be used to format instances according to the grammar defined in the specification.
type The type code string, defaults to ‘application’

subtype The sub-type code, defaults to ‘octet-stream’

parameters A dictionary such as would be returned by grammar .WordParser.parse_parameters ()
containing the media type’s parameters.

Instances are immutable and support parameter value access by lower-case key, returning the corresponding
value or raising KeyError. E.g., mtype[’charset’]

Instances also define comparison methods and a hash implementation. Media-types are compared by type,
subtype and ultimately parameters.

classmethod £rom_str (source)
Creates a media-type from a source string.

Enforces the following rule from the specification:

Linear white space (LWS) MUST NOT be used between the type and subtype, nor between an
attribute and its value

class pyslet .http.params.ProductToken (foken=None, version=None)
Bases: object

Represents an HTTP product token.
The built-in str function can be used to format instances according to the grammar defined in the specification.
Instances are immutable, they define comparison methods and a hash implementation.

The comparison operations use a more interesting sort than plain text on version in order to provide a more
intuitive ordering. As itis common practice to use dotted decimal notation for versions (with some alphanumeric
modifiers) the version string is exploded (see explode ()) internally on construction and this exploded value
is used in comparisons. The upshot is that version 1.0.3 sorts before 1.0.10 as you would expect and 1.0a < 1.0
< 1.0.3a3 < 1.0.3a20 < 1.0.3b1 < 1.0.3; there are limits to this algorithm. 1.0dev > 1.0b1 even though it looks
like it should be the other way around. Similarly 1.0-live < 1.0-prod etc.

You shouldn’t use this comparison as a definitive way to determine that one release is more recent or up-to-date
than another unless you know that the product in question uses a numbering scheme compatible with these rules.

token = None
the product’s token

version = None
the product’s version

classmethod explode (version)
Returns an exploded version string.

Version strings are split by dot and then by runs of non-digit characters resulting in a list of tuples. Exam-
ples will help:

5.4. HTTP Protocol Parameters 229

Pyslet Documentation, Release 0.6.20160201

explode ("2.15")==((2), (15))
explode ("2.17b3")==((2) (7,"b",3))
explode ("2.b3")==((2), (-1, "b",3))

Note that a missing leading numeric component is treated as -1 to force “a3” to sort before “0a3”.

classmethod from_str (source)
Creates a product token from a source string.

classmethod 1ist from str (source)
Creates a list of product tokens from a source string.

Individual tokens are separated by white space.

class pyslet.http.params.LanguageTag (primary, *subtags)

Bases: object

Represents an HTTP language-tag.

The built-in str function can be used to format instances according to the grammar defined in the specification.
Instances are immutable, they define comparison methods and a hash implementation.

partial_match (range)
True if this tag is a partial match against range

range A tuple of lower-cased subtags. An empty tuple matches all instances.

For example:

lang=LanguageTag ("en", ("US", "Texas"))
lang.partial_match(())==True
lang.partial_match(("en",)==True
lang.partial_match(("en", "us")==True
lang.partial_match(("en", "us", "texas")==True
lang.partial_match(("en","gb")==False
lang.partial_match(("en", "us", "tex")==False

classmethod £from_str (source)
Creates a language tag from a source string.

Enforces the following rules from the specification:
White space is not allowed within the tag

classmethod 1ist_from str (source)
Creates a list of language tags from a source string.

class pyslet.http.params.EntityTag (tag, weak=True)

Represents an HTTP entity-tag.

tag The opaque tag

weak A boolean indicating if the entity-tag is a weak or strong entity tag. Defaults to True.

The built-in str function can be used to format instances according to the grammar defined in the specification.
Instances are immutable, they define comparison methods and a hash implementation.

weak = None
True if this is a weak tag

tag = None
the opaque tag

230

Chapter 5. Hypertext Transfer Protocol (RFC2616)

Pyslet Documentation, Release 0.6.20160201

classmethod £from_str (source)
Creates an entity-tag from a source string.

5.4.1 Parsing Parameter Values

In most cases parameter values will be parsed directly by the class methods provided in the parameter types themselves.
For completeness a parameter parser is exposed to enable you to parse these values from more complex strings.

class pyslet.http.params.ParameterParser (source, ignore_sp=True)
Bases: pyslet.http.grammar.WordParser

An extended parser for parameter values

This parser defines attributes for dealing with English date names that are useful beyond the basic parsing
functions to allow the formatting of date information in English regardless of the locale.

parse_http_version()
Parses an HTTPVersion instance

Returns None if no version was found.

wkday = ["Mon’, ‘Tue’, ‘Wed’, ‘Thu’, ‘Fri’, ‘Sat’, ‘Sun’]
A list of English day-of-week abbreviations: wkday[0] == “Mon”, etc.

weekday = ["Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’, ‘Saturday’, ‘Sunday’]
A list of English day-of-week full names: weekday[0] == “Monday”

month =["Jan’, ‘Feb’, ‘Mar’, ‘Apr’, ‘May’, ‘Jun’, ‘Jul’, ‘Aug’, ‘Sep’, ‘Oct’, ‘Nov’, ‘Dec’]
A list of English month names: month[0] == “Jan”, etc.

require_fulldate ()
Parses a FFullDat e instance.

Raises BadSyntax if none is found.

There are three supported formats as described in the specification:

"Sun, 06 Nov 1994 08:49:37 GMT"
"Sunday, 06-Nov-94 08:49:37 GMT"
"Sun Nov 6 08:49:37 1994"

The first of these is the preferred format.

parse_delta_seconds ()
Parses a delta-seconds value, see WordParser.parse_integer ()

parse_charset ()
Parses a charset, see WordParser.parse_tokenlower ()

parse_content_coding ()
Parses a content-coding, see WordParser.parse_tokenlower ()

require_transfer_ encoding()
Parses a TransferEncoding instance

Returns None if no transfer-encoding was found.

require_chunk ()
Parses a chunk header

Returns a Chunk instance or None if no chunk was found.

5.4. HTTP Protocol Parameters 231

Pyslet Documentation, Release 0.6.20160201

require_media_type ()
Parses a Media Type instance.

Raises BadSyntax if no media-type was found.

require_product_token ()
Parses a Product Token instance.

Raises BadSyntax if no product token was found.

parse_qgvalue ()
Parses a qvalue returning a float

Returns None if no qvalue was found.

require_language_tag ()
Parses a language tag returning a LanguageTag instance. Raises BadSyntax if no language tag was
found.

require_entity_tag()
Parses an entity-tag returning a Ent it yTag instance. Raises BadSyntax if no language tag was found.

5.5 HTTP Grammar

This section defines functions for handling basic elements of the HTTP grammar, refer to Section 2.2 of RFC2616 for
details.

The HTTP protocol only deals with octets but as a convenience, and due to the blurring of octet and character strings
in Python 2.x we process characters as if they were octets.

pyslet.http.grammar.is_octet (¢)
Returns True if a character matches the production for OCTET.

pyslet.http.grammar.is_char (c¢)
Returns True if a character matches the production for CHAR.

pyslet.http.grammar.is_upalpha (c)
Returns True if a character matches the production for UPALPHA.

pyslet.http.grammar.is_loalpha (c)
Returns True if a character matches the production for LOALPHA.

pyslet.http.grammar.is_alpha (¢)
Returns True if a character matches the production for ALPHA.

pyslet.http.grammar.is_digit (c)
Returns True if a character matches the production for DIGIT.

pyslet.http.grammar.is_digits (src)
Returns True if all characters match the production for DIGIT.

Empty strings return False

pyslet.http.grammar.is_ctl (¢)
Returns True if a character matches the production for CTL.

LWS and TEXT productions are handled by OctetParser

pyslet.http.grammar.is_hex (c¢)
Returns True if a characters matches the production for HEX.

232 Chapter 5. Hypertext Transfer Protocol (RFC2616)

Pyslet Documentation, Release 0.6.20160201

pyslet.http.grammar.is_hexdigits (src)
Returns True if all characters match the production for HEX.

Empty strings return False

pyslet.http.grammar.check_ token (7)
Raises ValueError if ¢ is not a valid token

pyslet.http.grammar.is_separator (c)
Returns True if a character is a separator

pyslet.http.grammar.decode_quoted_string (gstring)
Decodes a quoted string, returning the unencoded string.

Surrounding double quotes are removed and quoted characters (characters preceded by) are unescaped.

pyslet.http.grammar.quote_string (s, force=True)
Places a string in double quotes, returning the quoted string.

This is the reverse of decode_quoted string (). Note that only the double quote, and CTL characters
other than SP and HT are quoted in the output.

If force is False then valid tokens are not quoted.

pyslet.http.grammar.format_parameters (parameters)
Formats a dictionary of parameters

This function is suitable for formatting parameter dictionaries parsed by
WordParser.parse_parameters ().

Parameter values are quoted only if their values require it, that is, only if their values are not valid tokens.

5.5